Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 117(1): 178-186, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38011807

ABSTRACT

The northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae) is a major pest of maize in the United States Corn Belt. Recently, resistance to Bacillus thuringiensis (Bt) maize was reported in North Dakota and increased use of Bt maize hybrids could facilitate resistance evolution in other maize-producing states. In this study, susceptibility to Bt proteins was evaluated in wild D. barberi populations from 8 fields collected in 5 different states (Minnesota, Missouri, Nebraska, Iowa, and North Dakota). Field populations were compared to a susceptible D. barberi colony in seedling and diet toxicity assays conducted with 3 concentrations of Cry3Bb1 (0.4, 4.0, and 40.0 µg/cm2) and Gpp34/Tpp35Ab1 (previously called Cry34/35Ab1; 1.4, 14.0, and 140.0 µg/cm2). The 2019 population from Meeker Co., Minnesota (MN-2019), exhibited the lowest mortality to Cry3Bb1 and also had nominally lowest mortality to Gpp34/Tpp35Ab1 at the highest concentrations tested in diet toxicity assays. Percent second instar was also highest for larvae of the Minnesota population surviving Cry3Bb1. In seedling assays, MN and IA-2018 populations exhibited the highest proportion survival and dry weight to both proteins expressed in corn. No significant differences in mortality, percent second instar, and dry weight were observed at the highest concentration for both proteins among the populations collected in in 2020. Most D. barberi populations were still highly susceptible to Cry3Bb1 and Gpp34/Tpp35Ab1 proteins based on diet and seedling assays, but resistance appears to be developing in some D. barberi populations. Now that methods are available, resistance monitoring may also be needed for D. barberi in some regions.


Subject(s)
Bacillus thuringiensis , Coleoptera , Animals , Zea mays/genetics , Seedlings , Bacterial Proteins/genetics , Plants, Genetically Modified , Endotoxins , Larva , Bacillus thuringiensis/genetics , Diet , Insecticide Resistance , Pest Control, Biological
2.
Phytopathology ; 113(11): 2103-2109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36399026

ABSTRACT

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has increased in both prevalence and severity in the major hard red spring wheat (HRSW)-producing state North Dakota. The disease is readily observed after flag leaf emergence and can quickly lead to defoliation and severe yield loss. The objectives of this research were to document the prevalence and incidence of BLS in North Dakota and provide estimations of yield and economic losses. Trained field scouts determined the incidence and prevalence of BLS in ND on HRSW plants between Feekes growth stage (FGS) 8 and FGS 11.2 from 2015 to 2021, and data were used to determine BLS-affected hectares. Yield data in combination with BLS ratings were obtained from HRSW performance trials to estimate the impact of BLS on yield. The combination of variety identity, hectarage data, BLS-affected hectarage estimates, and yield loss estimates was used to estimate economic losses from BLS in 2019 and 2020. Our data suggest that BLS-affected hectares ranged from 747 to 141,680 between 2015 and 2021. Yield loss was observed at multiple HRSW performance trial locations, with estimated yield losses as high as 60% on susceptible varieties. The amount of BLS-affected hectares was the highest in 2019 and 2020, and direct economic losses for North Dakota HRSW producers were estimated to be as high as $4.7 and $8.0 million, respectively. These data highlight the importance of BLS in HRSW and the need to procure resources for breeding efforts and grower education on management of BLS.


Subject(s)
Plant Diseases , Triticum , North Dakota , Triticum/microbiology , Plant Diseases/microbiology , Plant Breeding
3.
J Econ Entomol ; 115(4): 1191-1202, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35766410

ABSTRACT

Twenty years after the arrival of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in the United States, it remains the most economically important arthropod pest of soybean in the Upper Midwest Region. After years of repeated and sustained insecticidal pressures placed on the aphid, resistance to the pyrethroid class of insecticides has been documented in multiple years over a large geographic area. In this study, the fitness of aphid isolates displaying resistant and susceptible phenotypes to λ-cyhalothrin were compared within several experiments over three soybean-growing seasons. Rates of population increase were evaluated on whole plants in the greenhouse, intrinsic rates of increase were calculated from leaf discs in the laboratory, and aphid size and asymmetry were compared through tibial measurements. No evidence of a fitness cost associated with the resistant phenotype was seen in any of our experiments. In contrast, individual resistant isolates occasionally supported significantly higher fitness values than some susceptible isolates. Additionally, a pooled analysis comparing resistant and susceptible phenotypes across years and isolates revealed that, on average, the resistant phenotype had significantly higher fitness values than the susceptible phenotype in most experiments. The lack of reproductive fitness costs associated with the pyrethroid-resistant phenotype raises concerns for longevity of pyrethroid use in soybean aphid management.


Subject(s)
Aphids , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Pyrethrins/pharmacology , Seasons , Glycine max/genetics , United States
4.
J Econ Entomol ; 115(3): 748-756, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35417020

ABSTRACT

Flea beetles (Coleoptera: Chrysomelidae) of the genus Phyllotreta are major pests of cole crops, canola, and related crops in the mustard family (Brassicaceae). Adults may damage seedlings or larger crop plants, impairing crop growth, rendering crops unmarketable, or killing seedlings outright. The two major North American crucifer pest species, Phyllotreta striolata (F.) and Phyllotreta cruciferae (Goeze), have male-produced pheromones attractive to both female and male adults. We tested the racemic synthetic pheromones, himachaladiene and hydroxyhimachalanone, as well as the host-plant-produced allyl isothiocyanate, alone and in combination, with experimental trapping in Maryland, Virginia, and North Dakota, using clear and yellow sticky traps and the ground-based 'rocket' trap (modified from boll weevil trap). Phyllotreta striolata was consistently attracted to the hydroxyketone, and captures were often enhanced by allyl isothiocyanate (AITC), but its response to pheromones, AITC, and trap color were variable from state to state. Phyllotreta cruciferae was strongly attracted to AITC, but its response to pheromone components varied by state, and this species was found rarely at the Maryland site. Phyllotreta bipustulata (F.) was attracted to the diene component, a new finding for this species. Several other genera of flea beetles were captured, some showing response to the semiochemicals and/or color. Results will be helpful in monitoring and possibly population suppression; however, further research is necessary to develop more efficient syntheses, optimal lure loadings, combinations, and controlled release methods.


Subject(s)
Brassica napus , Coleoptera , Siphonaptera , Animals , Coleoptera/physiology , Female , Male , Pheromones/pharmacology , Plants
5.
Zootaxa ; 4958(1): zootaxa.4958.1.20, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33903467

ABSTRACT

Two new species of Tingidae are described from Panama: Acanthotingis deltoides sp. nov. and Stephanitis joceliae sp. nov. Descriptions and diagnosis for both Acanthotingis Monte and Stephanitis Stål are provided, and a key is given for the separation of the two known species of Acanthotingis. This is the first record of both genera from Panama. A checklist of all Neotropical species of both genera is presented.


Subject(s)
Heteroptera , Animals , Heteroptera/anatomy & histology , Heteroptera/classification , Panama , Species Specificity
6.
J Econ Entomol ; 114(3): 1362-1372, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33885759

ABSTRACT

Stink bugs represent an increasing risk to soybean production in the Midwest region of the United States. The current sampling protocol for stink bugs in this region is tailored for population density estimation and thus is more relevant to research purposes. A practical decision-making framework with more efficient sampling effort for management of herbivorous stink bugs is needed. Therefore, a binomial sequential sampling plan was developed for herbivorous stink bugs in the Midwest region. A total of 146 soybean fields were sampled across 11 states using sweep nets in 2016, 2017, and 2018. The binomial sequential sampling plans were developed using combinations of five tally thresholds at two proportion infested action thresholds to identify those that provided the best sampling outcomes. Final assessment of the operating characteristic curves for each plan indicated that a tally threshold of 3 stink bugs per 25 sweeps, and proportion infested action thresholds of 0.75 and 0.95 corresponding to the action thresholds of 5 and 10 stink bugs per 25 sweeps, provided the optimal balance between highest probability of correct decisions (≥ 99%) and lowest probability of incorrect decisions (≤ 1%). In addition, the average sample size for both plans (18 and 12 sets of 25 sweeps, respectively) was lower than that for the other proposed plans. The binomial sequential sampling plan can reduce the number of sample units required to achieve a management decision, which is important because it can potentially reduce risk/cost of management for stink bugs in soybean in this region.


Subject(s)
Heteroptera , Animals , Herbivory , Population Density , Glycine max , United States
7.
J Insect Sci ; 20(3)2020 May 01.
Article in English | MEDLINE | ID: mdl-32365174

ABSTRACT

Stink bugs (Hemiptera: Pentatomidae) are agricultural pests of increasing significance in the North Central Region of the United States, posing a threat to major crops such as soybean. Biological control can reduce the need for insecticides to manage these pests, but the parasitism of stink bugs by Tachinidae (Diptera) is poorly characterized in this region. The objective of this study was to evaluate the rate of parasitism of stink bugs by tachinids over 2 yr from nine states across the North Central Region. Parasitism was assessed by quantifying tachinid eggs on the integument of stink bug adults. Parasitism rates (i.e., percent of adult stink bugs with tachinid eggs) were compared across stink bug species, states, stink bug sex, and years. The mean percent parasitism of stink bugs by tachinids was about 6% across the region and did not differ among stink bug species. Mean percent parasitism was significantly higher in Missouri than in northern and western states. In addition, male stink bugs had significantly higher mean percent parasitism than females. Stink bug species commonly found in soybean in the region showed some parasitism and are therefore potentially vulnerable to oviposition by these parasitoids. This is the first study to characterize the level of parasitism of stink bugs by tachinids across the North Central Region.


Subject(s)
Diptera/physiology , Heteroptera/parasitology , Host-Parasite Interactions , Insect Control , Pest Control, Biological , Animals , Crops, Agricultural/growth & development , Female , Male , Midwestern United States , Glycine max/growth & development
8.
J Econ Entomol ; 113(2): 932-939, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31961438

ABSTRACT

Soybean aphid, Aphis glycines Matsumura, remains the most economically damaging arthropod pest of soybean in the midwestern United States and southern Canada. Foliar applications of a limited number of insecticide modes of action have been the primary management tactic, and pyrethroid resistance was documented recently with full concentration-response leaf-dip and glass-vial bioassays. Full concentration-response bioassays can be cumbersome, and a more efficient assessment tool was needed. In this study, we implemented a diagnostic-concentration glass-vial bioassay using bifenthrin and λ-cyhalothrin. Bioassays were conducted with field-collected soybean aphid populations to assess the geographic extent and severity of resistance to pyrethroids. In 2017, 10 of 18 and 11 of 21 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. In 2018, 17 of 23 and 13 of 23 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. Populations collected after reported field failures of a pyrethroid insecticide generally had mean proportion mortalities less than the susceptible laboratory population. In both years, there was a strong correlation between chemistries, which suggests cross-resistance between these insecticides. The diagnostic-concentration glass-vial bioassays reported here will provide the foundation for an insecticide resistance monitoring program with the ability to determine practical levels and geographic extent of insecticide resistance.


Subject(s)
Aphids/drug effects , Insecticides/pharmacology , Pyrethrins , Animals , Biological Assay , Canada , Insecticide Resistance/drug effects , Midwestern United States , Glycine max/drug effects
9.
J Econ Entomol ; 112(4): 1875-1886, 2019 08 03.
Article in English | MEDLINE | ID: mdl-31114868

ABSTRACT

Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.


Subject(s)
Bacillus thuringiensis , Coleoptera , Animals , Bacterial Proteins , Endotoxins , Insecticide Resistance , Larva , North America , North Dakota , Plants, Genetically Modified , Zea mays
10.
J Econ Entomol ; 112(4): 1722-1731, 2019 08 03.
Article in English | MEDLINE | ID: mdl-31038171

ABSTRACT

Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country's total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States.


Subject(s)
Glycine max , Heteroptera , Animals , Herbivory , United States
11.
J Econ Entomol ; 112(4): 1732-1740, 2019 08 03.
Article in English | MEDLINE | ID: mdl-31038178

ABSTRACT

Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance-mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40-42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5-10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (>100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean.


Subject(s)
Glycine max , Heteroptera , Animals , Nymph , Population Density , United States
12.
J Econ Entomol ; 111(1): 348-360, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29186516

ABSTRACT

Northern, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), and western, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), corn rootworms are economic pests of corn, Zea mays L. in North America. We measured the impacts of corn hybrids incorporated with Cry3Bb1, Cry34/35Ab1, and pyramided (Cry3Bb1 + Cry34/35Ab1) Bacillus thuringiensis Berliner (Bt) proteins, tefluthrin soil insecticide, and clothianidin insecticidal seed treatment on beetle emergence, larval feeding injury, and corn yield at five locations from 2013 to 2015 in eastern North Dakota. In most cases, emergence was significantly lower in Bt-protected corn than in non-Bt corn hybrids. Exceptions included Wyndmere, ND (2013), where D. barberi emergence from Cry34/35Ab1 plots was not different from that in the non-Bt hybrid, and Arthur, ND (2013), where D. v. virgifera emergence from Cry3Bb1 plots did not differ from that in the non-Bt hybrid. Bt hybrids generally produced increased grain yield compared with non-Bt corn where rootworm densities were high, and larval root-feeding injury was consistently lower in Bt-protected plots than in non-Bt corn. The lowest overall feeding injury and emergence levels occurred in plots planted with the Cry3Bb1 + Cry34/35Ab1 hybrid. Time to 50% cumulative emergence of both species was 5-7 d later in Bt-protected than in non-Bt hybrids. Tefluthrin and clothianidin were mostly inconsequential in relation to beetle emergence and larval root injury. Our findings could suggest that some North Dakota populations could be in early stages of increased tolerance to some Bt toxins; however, Bt corn hybrids currently provide effective protection against rootworm injury in eastern North Dakota.


Subject(s)
Coleoptera/physiology , Cyclopropanes/pharmacology , Herbivory , Hydrocarbons, Fluorinated/pharmacology , Insecticides/pharmacology , Zea mays/physiology , Animals , Bacillus thuringiensis/chemistry , Coleoptera/growth & development , Larva/growth & development , Larva/physiology , North Dakota , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Seeds/growth & development , Seeds/physiology , Soil/chemistry , Zea mays/genetics , Zea mays/growth & development
13.
Zootaxa ; 4269(1): 146-150, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28610347

ABSTRACT

Dictyla ainsliei (Drake and Poor) is transferred to the genus Ambotingis Drake and Ruhoff, redescribed, and reported from Costa Rica for the first time. Ambotingis senta (Drake and Hambleton) is also diagnosed, and a key for the separation of the two species is provided.


Subject(s)
Heteroptera , Animals , Costa Rica
14.
Pest Manag Sci ; 73(10): 2184-2193, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28459234

ABSTRACT

BACKGROUND: A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. RESULTS: Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. CONCLUSION: These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry.


Subject(s)
Aphids , Insect Control , Insecticides , Neonicotinoids , Nitro Compounds , Oxazines , Thiazoles , Animals , Fungicides, Industrial/toxicity , Insect Control/methods , Midwestern United States , Plant Leaves/physiology , Seeds/physiology , Glycine max/growth & development , Thiamethoxam
15.
Environ Entomol ; 43(1): 58-68, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24367911

ABSTRACT

Banded sunflower moth, Cochylis hospes Walsingham, is one of the most destructive seed-feeding insect pests of sunflowers, causing significant economic yield losses in the northern Great Plains. In an attempt to understand host-plant resistance mechanisms for this pest, we field-tested, over several years, the effects of seven sunflower accessions, rated as resistant to C. hospes in previous screening trials, and a susceptible control (Par 1673-2), on the ovipositional preference and larval performance of C. hospes and its larval parasitoids. Of the resistant accessions, PI 494859 was the most preferred for oviposition, receiving a significantly greater number of eggs per head than did the susceptible Par 1673-2 in 2 of 3 yr. However, the numbers of larvae, and consequently the rate of seed infestation, found in PI 494859 heads were significantly lower than those in Par 1673-2 heads over all 3 yr. Female moths laid relatively few eggs on accessions PI 170385, 291403, and 251902, compared with on Par 1673-2, resulting in lower numbers of larvae per head and lower percentages of seed damaged. No association was observed between the concentrations of two diterpenoid alcohols or two diterpenoid acids in sunflower bracts and the numbers of eggs laid on the heads of the accessions. The number of banded sunflower moth larvae and the proportion of seeds damaged were positively correlated with kaurenoic acid concentrations and negatively correlated with kauranol concentrations. A positive association between resistance to larval feeding and parasitism was found in years 2006 and 2008, with resistant accessions having significantly greater proportions of parasitized larvae than did the susceptible Par 1673-2.


Subject(s)
Diterpenes/metabolism , Helianthus/metabolism , Herbivory , Moths/physiology , Oviposition , Animals , Female , Flowering Tops/metabolism , Host-Parasite Interactions , Larva/parasitology , Larva/physiology , Moths/parasitology , Seeds , Wasps/physiology
16.
Environ Entomol ; 41(2): 282-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22507000

ABSTRACT

Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.


Subject(s)
Aphids/parasitology , Genes, Plant , Glycine max/genetics , Hymenoptera/physiology , Pest Control, Biological , Animals
17.
J Econ Entomol ; 104(4): 1236-44, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21882688

ABSTRACT

Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.


Subject(s)
Helianthus/parasitology , Host-Parasite Interactions , Moths/physiology , Seeds/parasitology , Tephritidae/physiology , Agriculture/methods , Animals , Biomass , North Dakota , Population Density , Time Factors
18.
J Econ Entomol ; 101(3): 810-21, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18613582

ABSTRACT

Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.


Subject(s)
Coleoptera/drug effects , Cycadopsida/parasitology , Insecticides/toxicity , Animals , Coleoptera/pathogenicity , Insect Control/methods , Siphonaptera/drug effects , Siphonaptera/pathogenicity
19.
J Econ Entomol ; 96(3): 706-13, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12852608

ABSTRACT

The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.


Subject(s)
Coleoptera/physiology , Helianthus/physiology , Helianthus/parasitology , Insect Control/methods , Plant Diseases/parasitology , Animals , Crops, Agricultural/parasitology , Feeding Behavior , Helianthus/chemistry , Larva/physiology , Plant Oils/analysis , Population Density , Seasons , Seeds/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...