Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35625901

ABSTRACT

Anxiety disorder is one of the most reported complications following organophosphorus (OP) nerve agent (NA) exposure. The goal of this study was to characterize the long-term behavioral impact of a single low dose exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. We chose two different sublethal doses of NIMP, each corresponding to a fraction of the median lethal dose (one mild and one convulsive), and evaluated behavioral changes over a 6-month period following exposure. Mice exposed to both doses showed anxious behavior which persisted for six-months post-exposure. A longitudinal magnetic resonance imaging examination did not reveal any anatomical changes in the amygdala throughout the 6-month period. While no cholinesterase activity change or neuroinflammation could be observed at the latest timepoint in the amygdala of NIMP-exposed mice, important modifications in white blood cell counts were noted, reflecting a perturbation of the systemic immune system. Furthermore, intestinal inflammation and microbiota changes were observed at 6-months in NIMP-exposed animals regardless of the dose received. This is the first study to identify long-term behavioral impairment, systemic homeostasis disorganization and gut microbiota alterations following OP sublethal exposure. Our findings highlight the importance of long-term care for victims of NA exposure, even in asymptomatic cases.

2.
Toxicology ; 456: 152787, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33887375

ABSTRACT

Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.


Subject(s)
Brain Waves/drug effects , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Cognitive Dysfunction/chemically induced , Sarin/toxicity , Animals , Brain Waves/physiology , Cholinesterase Inhibitors/administration & dosage , Cholinesterases/metabolism , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/physiopathology , Electrocorticography/drug effects , Electrocorticography/methods , Male , Mice , Sarin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...