Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 10: 977827, 2022.
Article in English | MEDLINE | ID: mdl-36263148

ABSTRACT

Background: Long-term neurological complaints after SARS-CoV-2 infection occur in 4-66% of children and adolescents. Controlled studies on the integrity of the peripheral nerve system are scarce. Therefore, we examined the somatosensory function in children and adolescents after SARS-CoV-2 infection in a case-control study compared with age-matched individuals. Materials and Methods: Eighty-one subjects after SARS-CoV-2 infection (n = 44 female, 11.4 ± 3.5 years, n = 75 SARS-CoV-2 seropositive, n = 6 PCR positive during infection and SARS-CoV-2 seronegative at the time point of study inclusion, n = 47 asymptomatic infection) were compared to 38 controls without SARS-CoV-2 infection (26 female, 10.3 ± 3.4 years, n = 15 with other infection within last 6 months). After standardised interviews and neurological examinations, large fibre (tactile and vibration detection thresholds) and small fibre (cold and warm detection thresholds, paradoxical heat sensation) functions were assessed on both feet following a validated protocol. After z-transformation of all values, all participants were compared to published reference values regarding the number of abnormal results. Additionally, the mean for all sensory parameters values of both study groups were compared to an ideal healthy population (with z-value 0 ± 1), as well as with each other, as previously described. Statistical analyses: t-test, Chi-squared test, and binominal test. Findings: None of the controls, but 27 of the 81 patients (33%, p < 0.001) reported persistent complaints 2.7 ± 1.9 (0.8-8.5) months after SARS-CoV-2 infection, most often reduced exercise capacity (16%), fatigue (13%), pain (9%), or paraesthesia (6%). Reflex deficits or paresis were missing, but somatosensory profiles showed significantly increased detection thresholds for thermal (especially warm) and vibration stimuli compared to controls. Approximately 36% of the patients after SARS-CoV-2, but none of the controls revealed an abnormal sensory loss in at least one parameter (p < 0.01). Sensory loss was characterised in 26% by large and 12% by small fibre dysfunction, the latter appearing more frequently in children with prior symptomatic SARS-CoV-2 infection. Myalgia/paraesthesia was indicative of somatosensory dysfunction. In all eight re-examined children, the nerve function recovered after 2-4 months. Interpretation: This study provides evidence that in a subgroup of children and adolescents previously infected with SARS-CoV-2, regardless of their complaints, the function of large or small nerve fibres is presumably reversibly impaired.

2.
Front Pediatr ; 10: 851008, 2022.
Article in English | MEDLINE | ID: mdl-35547532

ABSTRACT

Background: Persistent respiratory symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in adults are frequent, and there can be long-term impairment of pulmonary function. To date, only preliminary evidence is available on persistent respiratory sequelae of SARS-CoV-2 in children and adolescents. Our objective was to examine the long-term effects of symptomatic and asymptomatic SARS-CoV-2 infections on pulmonary function in this age group in a single-center, controlled, prospective study. Methods: Participants with serological or polymerase chain reaction-based evidence of SARS-CoV-2 infection were recruited from a population-based study of seroconversion rates. Multiple-breath washout (MBW), body plethysmography, and diffusion capacity testing were performed for children and adolescents. Participants were interviewed about their symptoms during the acute phase of infection and long-lasting symptoms. Cases were compared with SARS-CoV-2 seronegative controls from the same population-based study with and without history of respiratory infection within 6 months prior to assessment. Primary endpoints were differences in pulmonary function, including diffusion capacity and MBW, between participants with and without evidence of SARS-CoV-2 infection. Secondary endpoints included correlation between lung function and long-lasting symptoms as well as disease severity. Findings: In total, 73 seropositive children and adolescents (5-18 years) were recruited after an average of 2.6 months (range 0.4-6.0) following SARS-CoV-2 infection. Among 19 patients (27.1%) who complained of persistent or newly emerged symptoms since SARS-CoV-2, 8 (11.4%) reported respiratory symptoms. No significant differences were detected in frequency of abnormal pulmonary function when comparing cases with 45 controls, including 14 (31.1%) with a history of previous infection (SARS-CoV-2: 12, 16.4%; controls: 12, 27.7%; odds ratio 0.54, 95% confidence interval 0.22-1.34). Only two patients with persistent respiratory symptoms showed abnormal pulmonary function. Multivariate analysis revealed reduced forced vital capacity (p = 0.012) in patients with severe SARS-CoV-2 infection. Interpretation: Pulmonary function is rarely impaired in children and adolescents after SARS-CoV-2 infection, except from those with severe infection, and did not differ between SARS-CoV-2 and other previous infections, suggesting that SARS-CoV-2 is not more likely to cause pulmonary sequelae than other infections. The discrepancy between persisting respiratory symptoms and normal pulmonary function suggests a different underlying pathology such as dysfunctional breathing.

3.
Biosensors (Basel) ; 10(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933070

ABSTRACT

Analysis of sweat chloride levels in cystic fibrosis (CF) patients is essential not only for diagnosis but also for the monitoring of therapeutic responses to new drugs, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and potentiators. Using iontophoresis as the gold standard can cause complications like burns, is uncomfortable, and requires repetitive hospital visits, which can be particularly problematic during a pandemic, where distancing and hygiene requirements are increased; therefore, it is necessary to develop fast and simple measures for the diagnosis and monitoring of CF. A screen-printed, low-cost chloride sensor was developed to remotely monitor CF patients. Using potentiometric measurements, the performance of the sensor was tested. It showed good sensitivity and a detection limit of 2.7 × 10-5 mol/L, which covered more than the complete concentration range of interest for CF diagnosis. Due to its fast response of 30 s, it competes well with standard sensor systems. It also offers significantly reduced costs and can be used as a portable device. The analysis of real sweat samples from healthy subjects, as well as CF patients, demonstrates a proper distinction using the screen-printed sensor. This approach presents an attractive remote measurement alternative for fast, simple, and low-cost CF diagnosis and monitoring.


Subject(s)
Biosensing Techniques , Chlorides/analysis , Sweat/chemistry , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...