Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acc Chem Res ; 48(8): 2280-7, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26186416

ABSTRACT

Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces low-lying, long-lived dppn/Me2dppn (3)ππ* excited states that generate (1)O2. Similar to [Ru(bpy)2(CH3CN)2](2+), photodissociation of CH3CN occurs upon irradiation of [Ru(bpy)(dppn)(CH3CN)2](2+), although with lower efficiency because of the presence of the (3)ππ* state. The steric bulk in [Ru(tpy)(Me2dppn)(py)](2+) is critical in facilitating the photoinduced py dissociation, as the analogous complex [Ru(tpy)(dppn)(py)](2+) produces (1)O2 with near-unit efficiency. The ability to tune the relative energies of the excited states provides a means to design potentially more active drugs for photochemotherapy because the photorelease of drugs can be coupled to the therapeutic action of reactive oxygen species, effecting cell death via two different mechanisms. The lessons learned about tuning of the excited-state properties can be applied to the use of Ru(II)-polypyridyl compounds in a variety of applications, such as solar energy conversion, sensors and switches, and molecular machines.


Subject(s)
Coordination Complexes/chemistry , Ruthenium/chemistry , Superoxides/chemistry , Ligands , Light , Quantum Theory , Superoxides/metabolism
2.
Coord Chem Rev ; 282-283: 110-126, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25729089

ABSTRACT

The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex.

3.
Dalton Trans ; 44(8): 3640-6, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25557067

ABSTRACT

The interactions between the 6-mer duplex oligonucleotide d(GTCGAC)2 and the photoactive dirhodium complexes cis-H,H-[Rh2(HNOCCH3)2(L)(CH3CN)4](2+), where L represents bpy (1, 2,2'-bipyridine) and dppz (2, dipyrido[3,2-a:2',3'-c]phenazine), were probed using 2D (1)H-(1)H NOESY NMR spectroscopy. Complex does not interact with the duplex in the dark, but binds covalently to the terminal guanine following irradiation with visible light. Similar behavior was observed for 2, but in addition to the photoinduced covalent DNA binding, the planar dppz ligand of the complex shields the terminal cytosine protons after irradiation. The results are consistent with photoinduced guanine coordination and end-capping of the duplex through π-stacking interactions with the terminal GC base pair. These data show that in the presence of the 6-mer duplex oligonucleotide, 1 and 2 exhibit photoinduced covalent binding to DNA. In addition, the π-stacking interactions of 2 with the duplex are enhanced upon irradiation.


Subject(s)
Coordination Complexes/chemistry , Oligonucleotides/chemistry , Rhodium/chemistry , 2,2'-Dipyridyl/chemistry , Base Sequence , Coordination Complexes/chemical synthesis , Isomerism , Light , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Denaturation
4.
Inorg Chem ; 54(4): 1901-11, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25611351

ABSTRACT

Ruthenium-based photocaging groups have important applications as biological tools and show great potential as therapeutics. A method was developed to rapidly synthesize, screen, and identify ruthenium-based caging groups that release nitriles upon irradiation with visible light. A diverse library of tetra- and pentadentate ligands was synthesized on polystyrene resin. Ruthenium complexes of the general formula [Ru(L)(MeCN)n](m+) (n = 1-3, m = 1-2) were generated from these ligands on solid phase and then cleaved from resin for photochemical analysis. Data indicate a wide range of spectral tuning and reactivity with visible light. Three complexes that showed strong absorbance in the visible range were synthesized by solution phase for comparison. Photochemical behavior of solution- and solid-phase complexes was in good agreement, confirming that the library approach is useful in identifying candidates with desired photoreactivity in short order, avoiding time-consuming chromatography and compound purification.


Subject(s)
Light , Organometallic Compounds/chemical synthesis , Ruthenium/chemistry , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Photochemical Processes
5.
J Phys Chem A ; 118(45): 10603-10, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25027458

ABSTRACT

The introduction of steric bulk to the bidentate ligand in [Ru(tpy)(bpy)(py)](2+) (1; tpy = 2,2':2',6″-terpyridine; bpy = 2,2'-bipyridine; py = pyridine) to provide [Ru(tpy)(Me2bpy)(py)](2+) (2; Me2bpy = 6,6'-dimethyl-2,2'-bipyridine) and [Ru(tpy)(biq)(py)](2+) (3; biq = 2,2'-biquinoline) facilitates photoinduced dissociation of pyridine with visible light. Upon irradiation of 2 and 3 in CH3CN (λirr = 500 nm), ligand exchange occurs to produce the corresponding [Ru(tpy)(NN)(NCCH3)](2+) (NN = Me2bpy, biq) complex with quantum yields, Φ500, of 0.16(1) and 0.033(1) for 2 and 3, respectively. These values represent an increase in efficiency of the reaction by 2-3 orders of magnitude as compared to that of 1, Φ500 < 0.0001, under similar experimental conditions. The photolysis of 2 and 3 in H2O with low energy light to produce [Ru(tpy)(NN)(OH2)](2+) (NN = Me2bpy, biq) also proceeds rapidly (λirr > 590 nm). Complexes 1-3 are stable in the dark in both CH3CN and H2O under similar experimental conditions. X-ray crystal structures and theoretical calculations highlight significant distortion of the planes of the bidentate ligands in 2 and 3 relative to that of 1. The crystallographic dihedral angles defined by the bidentate ligand, Me2bpy in 2 and biq in 3, and the tpy ligand were determined to be 67.87° and 61.89°, respectively, whereas only a small distortion from the octahedral geometry is observed between bpy and tpy in 1, 83.34°. The steric bulk afforded by Me2bpy and biq also result in major distortions of the pyridine ligand in 2 and 3, respectively, relative to 1, which are believed to weaken its σ-bonding and π-back-bonding to the metal and play a crucial role in the efficiency of the photoinduced ligand exchange. The ability of 2 and 3 to undergo ligand exchange with λirr > 590 nm makes them potential candidates to build photochemotherapeutic agents for the delivery of drugs with pyridine binding groups.


Subject(s)
Photolysis , Pyridines/chemistry , Ruthenium Compounds/chemistry , Crystallography, X-Ray , Light , Models, Chemical , Proton Magnetic Resonance Spectroscopy , Spectrum Analysis , Water/chemistry
6.
ChemMedChem ; 9(6): 1306-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24729544

ABSTRACT

Light-activated inhibition of cathepsin activity was demonstrated in a cell-based assay. Inhibitors of cathepsin K, Cbz-Leu-NHCH2 CN (2) and Cbz-Leu-Ser(OBn)-CN (3), were caged within the complexes cis-[Ru(bpy)2 (2)2 ]Cl2 (4) and cis-[Ru(bpy)2 (3)2 ](BF4 )2 (5) (bpy=2,2'-bipyridine) as 1:1 mixtures of Δ and Λ stereoisomers. Complexes 4 and 5 were characterized by (1) H NMR, IR, and UV/Vis spectroscopies and electrospray mass spectrometry. Photochemical experiments confirm that 4 releases two molecules of 2 upon exposure to visible light for 15 min, whereas release of 3 by 5 requires longer irradiation times. IC50 determinations against purified cathepsin K under light and dark conditions with 4 and 5 confirm that inhibition is enhanced from 35- to 88-fold, respectively, upon irradiation with visible light. No apparent toxicity was observed for 4 in the absence or presence of irradiation in bone marrow macrophage (BMM) or PC3 cells, as determined by MTT assays, at concentrations up to 10 µM. Compound 5 is well tolerated at lower concentrations (<1 µM), but does show growth-inhibitory effects at higher concentrations. Confocal microscopy experiments show that 4 decreases intracellular cathepsin activity in osteoclasts with light activation. These results support the further development of caged nitrile-based inhibitors as chemical tools for investigating spatial aspects of proteolysis within living systems.


Subject(s)
Cathepsin K/antagonists & inhibitors , Coordination Complexes/chemistry , Enzyme Inhibitors/chemistry , Light , Ruthenium/chemistry , 2,2'-Dipyridyl/chemistry , Animals , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cathepsin K/metabolism , Cell Line , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/toxicity , Mice , Microscopy, Confocal
7.
Inorg Chem ; 53(7): 3272-4, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24661182

ABSTRACT

Ruthenium(II) tris(2-pyridylmethyl)amine (TPA) is an effective caging group for nitriles that provides high levels of control over the enzyme activity with light. Two caged nitriles were prepared, [Ru(TPA)(MeCN)2](PF6)2 (1) and [Ru(TPA)(3)2](PF6)2 (2), where 3 is the cathepsin K inhibitor Cbz-Leu-NHCH2CN, and characterized by various spectroscopic techniques and mass spectrometry. Both 1 and 2 show the release of a single nitrile within 20 min of irradiation with 365 nm light. Complex 2 acts as a potent, photoactivated inhibitor of human cathepsin K. IC50 values were determined for 2 and 3. Enzyme inhibition for 2 was enhanced by a factor of 89 upon exposure to light, with IC50 values of 63 nM (light) and 5.6 µM (dark).


Subject(s)
Nitriles/chemistry , Pyridines/chemistry , Ruthenium Compounds/chemistry , Cathepsin K/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Indicators and Reagents , Light , Models, Molecular , Pyridines/pharmacology , Ruthenium Compounds/pharmacology
8.
Inorg Chem ; 52(17): 9749-60, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23941111

ABSTRACT

Two new structurally diverse polyazine-bridged Ru(II),Pt(II) tetrametallic complexes, [{(Ph2phen)2Ru(dpp)}2Ru(dpp)PtCl2](PF6)6 (1a) and [{(Ph2phen)2Ru(dpp)}2Ru(dpq)PtCl2](PF6)6 (2a) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline), as well as their trimetallic precursors have been synthesized to provide a comparison for detailed analysis to elucidate component effects in the previously reported photocatalyst [{(phen)2Ru(dpp)}2Ru(dpq)PtCl2](PF6)6 (4a) (phen = 1,10-phenanthroline). Electrochemistry shows terminal Ru based highest occupied molecular orbitals (HOMOs) with remote BL' (BL' = bridging ligand coupling central Ru and cis-PtCl2 moiety) based lowest unoccupied molecular orbitals (LUMOs). Population of a lowest-lying charge separated ((3)CS) excited state with oxidized terminal Ru and reduced remote BL' via intramolecular electron transfer is predicted by electrochemical analysis and is observed through steady-state and time-resolved emission studies as well as emission excitation profiles which display unusual nonunity population of the lowest lying emissive Ru→dpp (3)MLCT (metal-to-ligand charge transfer) state. Each tetrametallic complex is an active photocatalyst for H2 production from H2O with 2a showing the highest activity (94 TON (turnover number) in 10 h, where TON = mol H2/mol catalyst). The nature of the bridging ligand coupling the trimetallic light absorber to the cis-PtCl2 moiety has a significant impact on the catalyst activity, correlated to the degree of population of the (3)CS excited state. The choice of terminal ligand affects visible light absorption and has a minor influence on photocatalytic H2 production from H2O. Evidence that an intact supramolecule functions as the photocatalyst includes a strong dependence of the photocatalysis on the identity of BL', an insensitivity to Hg(l), no detectable H2 production from the systems with the trimetallic synthons and cis-[PtCl2(DMSO)2] as well as spectroscopic analysis of the photocatalytic system.

9.
Inorg Chem ; 50(18): 8850-60, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21861446

ABSTRACT

Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.

10.
ChemSusChem ; 4(2): 252-61, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21328554

ABSTRACT

Coupling a reactive metal to light absorbers affords molecular devices for photoinitiated electron collection and photocatalytic conversion of substrates to fuels. A new Ru(II),Pt(II) tetrametallic supramolecule, [{(phen)(2)Ru(dpp)}(2)Ru(dpq)PtCl(2)](PF(6))(6), and the trimetallic precursors, [{(phen)(2)Ru(dpp)}(2)RuCl(2)](PF(6))(4) and [{(phen)(2)Ru(dpp)}(2)Ru(dpq)](PF(6))(6), have been synthesized, and their redox, spectroscopic, spectroelectrochemical, photophysical and photocatalytic properties studied. They efficiently absorb UV and visible light. The electrochemistry of [{(phen)(2)Ru(dpp)}(2)Ru(dpq)PtCl(2)](PF(6))(6) suggests a lowest-lying terminal Ru→dpq charge-separated state that quenches the emission of the parent complex with non-unity population of the emissive (3)MLCT excited state. Photolysis of [{(phen)(2)Ru(dpp)}(2)Ru(dpq)PtCl(2)](6+) at 470 nm with DMA gives multielectron reduction, storing electrons in a new manner on the central (dpp)(2)Ru(II)(dpq) moiety. Addition of H(2)O to the photolysis system produces 21 µmol of H(2) in 5 h, with 115 turnovers of the tetrametallic photocatalyst.


Subject(s)
Hydrogen/chemistry , Organometallic Compounds/chemistry , Photochemistry/methods , Plutonium/chemistry , Ruthenium/chemistry , Water/chemistry , Catalysis , Cations, Divalent , Electrochemistry , Electrons , Ligands , Light , Oxidation-Reduction , Spectrum Analysis
11.
Materials (Basel) ; 5(1): 27-46, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-28817031

ABSTRACT

Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL)2Ru(dpp)}2RhX2](PF6)5 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the ³MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the ³MLCT state and not the ³MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...