Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Nanoscale Horiz ; 9(4): 598-608, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38385442

ABSTRACT

We report on the synthesis of "clickable" graphene nanoribbons (GNRs) and their application as a versatile interface for electrochemical biosensors. GNRs are successfully deposited on gold-coated working electrodes and serve as a platform for the covalent anchoring of a bioreceptor (i.e., a DNA aptamer), enabling selective and sensitive detection of Interleukin 6 (IL6). Moreover, when applied as the intermediate linker on reduced graphene oxide (rGO)-based field-effect transistors (FETs), the GNRs provide improved robustness compared to conventional aromatic bi-functional linker molecules. GNRs enable an orthogonal and covalent attachment of a recognition unit with a considerably higher probe density than previously established methods. Interestingly, we demonstrate that GNRs introduce photoluminescence (PL) when applied to rGO-based FETs, paving the way toward the simultaneous optical and electronic probing of the attached biointerface.


Subject(s)
Biosensing Techniques , Graphite , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Graphite/chemistry , Biosensing Techniques/methods
2.
Anal Bioanal Chem ; 416(9): 2137-2150, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37269306

ABSTRACT

Two-dimensional (2D) materials hold great promise for future applications, notably their use as biosensing channels in the field-effect transistor (FET) configuration. On the road to implementing one of the most widely used 2D materials, graphene, in FETs for biosensing, key issues such as operation conditions, sensitivity, selectivity, reportability, and economic viability have to be considered and addressed correctly. As the detection of bioreceptor-analyte binding events using a graphene-based FET (gFET) biosensor transducer is due to either graphene doping and/or electrostatic gating effects with resulting modulation of the electrical transistor characteristics, the gFET configuration as well as the surface ligands to be used have an important influence on the sensor performance. While the use of back-gating still grabs attention among the sensor community, top-gated and liquid-gated versions have started to dominate this area. The latest efforts on gFET designs for the sensing of nucleic acids, proteins and virus particles in different biofluids are presented herewith, highlighting the strategies presently engaged around gFET design and choosing the right bioreceptor for relevant biomarkers.


Subject(s)
Biosensing Techniques , Graphite , Nucleic Acids , Transistors, Electronic , Proteins , Biomarkers , Biosensing Techniques/methods
3.
Anal Bioanal Chem ; 416(9): 2247-2259, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38006442

ABSTRACT

Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Materials Science , Biosensing Techniques/methods , Nanotechnology/methods , Sensitivity and Specificity , Electrochemical Techniques
4.
Macromol Rapid Commun ; 45(4): e2300549, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37983912

ABSTRACT

This study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. This approach combines thermoresponsive poly(2-alkyl-2-oxazoline)s, known for their inherent protein-repellent characteristics, with established antifouling motifs based on betaines. The polymer framework is constructed from various monomer types, including a novel benzophenone-modified 2-oxazoline for photocrosslinking and an azide-functionalized 2-oxazoline, allowing subsequent modification with alkyne-substituted antifouling motifs through copper(I)-catalyzed azide-alkyne cycloaddition. From these polymers surface-attached networks are created on benzophenone-modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2-alkyl-2-oxazoline)s can exhibit a lower critical solution temperature in water, their temperature-dependent solubility is compared to the swelling behavior of the surface-attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma is further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrate extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allow efficient penetration by plasma components, which can then be easily removed by rinsing with buffer.


Subject(s)
Azides , Hydrogels , Humans , Hydrogels/chemistry , Polymers/chemistry , Plasma , Alkynes , Benzophenones
5.
Article in English | MEDLINE | ID: mdl-37851945

ABSTRACT

Organic electrochemical transistors (OECTs) are important devices for the development of flexible and wearable sensors due to their flexibility, low power consumption, sensitivity, selectivity, ease of fabrication, and compatibility with other flexible materials. These features enable the creation of comfortable, versatile, and efficient portable devices that can monitor and detect a wide range of parameters for various applications. Herein, we present OECTs based on PEDOT-polyamine thin films for the selective monitoring of phosphate-containing compounds. Our findings reveal that supramolecular single phosphate-amino interaction induces higher changes in the OECT response compared to ATP-amino interactions, even at submillimolar concentrations. The steric character of binding anions plays a crucial role in OECT sensing, resulting in a smaller shift in maximum transconductance voltage and threshold voltage for bulkier binding species. The OECT response reflects not only the polymer/solution interface but also events within the conducting polymer film, where ion transport and concentration are affected by the ion size. Additionally, the investigation of enzyme immobilization reveals the influence of phosphate species on the assembly behavior of acetylcholinesterase (AchE) on PEDOT-PAH OECTs, with increasing phosphate concentrations leading to reduced enzyme anchoring. These findings contribute to the understanding of the mechanisms of OECT sensing and highlight the importance of careful design and optimization of the biosensor interface construction for diverse sensing applications.

6.
Insect Biochem Mol Biol ; 162: 104012, 2023 11.
Article in English | MEDLINE | ID: mdl-37743031

ABSTRACT

The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.


Subject(s)
Arthropods , Isopoda , Receptors, Odorant , Animals , Pheromones/metabolism , Isopoda/genetics , Isopoda/metabolism , Insecta/metabolism , Transcriptome , Smell/genetics , Insect Proteins/metabolism , Arthropods/genetics , Receptors, Odorant/metabolism , Arthropod Antennae/metabolism , Phylogeny , Gene Expression Profiling
7.
ACS Appl Mater Interfaces ; 15(40): 46655-46667, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37753951

ABSTRACT

Membrane proteins are among the most difficult to study as they are embedded in the cellular membrane, a complex and fragile environment with limited experimental accessibility. To study membrane proteins outside of these environments, model systems are required that replicate the fundamental properties of the cellular membrane without its complexity. We show here a self-assembled lipid bilayer nanoarchitecture on a solid support that is stable for several days at room temperature and allows the measurement of insect olfactory receptors at the single-channel level. Using an odorant binding protein, we capture airborne ligands and transfer them to an olfactory receptor from Drosophila melanogaster (OR22a) complex embedded in the lipid membrane, reproducing the complete olfaction process in which a ligand is captured from air and transported across an aqueous reservoir by an odorant binding protein and finally triggers a ligand-gated ion channel embedded in a lipid bilayer, providing direct evidence for ligand capture and olfactory receptor triggering facilitated by odorant binding proteins. This model system presents a significantly more user-friendly and robust platform to exploit the extraordinary sensitivity of insect olfaction for biosensing. At the same time, the platform offers a new opportunity for label-free studies of the olfactory signaling pathways of insects, which still have many unanswered questions.

8.
J Phys Chem B ; 127(16): 3641-3650, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37072125

ABSTRACT

The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine.


Subject(s)
Ion Channels , Electrochemical Techniques , Ion Channels/chemistry , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Cyclic AMP/metabolism , Bacteria/chemistry , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
9.
ACS Appl Mater Interfaces ; 15(8): 10885-10896, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36791086

ABSTRACT

"Clickable" organic electrochemical transistors (OECTs) allow the reliable and straightforward functionalization of electronic devices through the well-known click chemistry toolbox. In this work, we study various aspects of the click chemistry-based interface engineering of "clickable" OECTs. First, different channel architectures are investigated, showing that PEDOT-N3 films can properly work as a channel of the transistors. Furthermore, the Cu(I)-catalyzed click reaction of ethynyl-ferrocene is studied under different reaction conditions, endowing the spatial control of the functionalization. The strain-promoted and catalyst-free cycloaddition of a dibenzocyclooctyne-derivatized poly-l-lysine (PLL-DBCO) is also performed on the OECTs and validated by a fiber optic (FO)-SPR setup. The further immobilization of an azido-modified HD22 aptamer yields OECT-based biosensors that are employed for the recognition of thrombin. Finally, their performance is evaluated against previously reported architectures, showing higher density of the immobilized HD22 aptamer, and originating similar KD values and higher maximum signal change upon analyte recognition.


Subject(s)
Biosensing Techniques , Transistors, Electronic , Electronics , Lysine , Oligonucleotides , Electrochemical Techniques
10.
Nat Commun ; 14(1): 48, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599851

ABSTRACT

Biopsy is the recommended standard for pathological diagnosis of liver carcinoma. However, this method usually requires sectioning and staining, and well-trained pathologists to interpret tissue images. Here, we utilize Raman spectroscopy to study human hepatic tissue samples, developing and validating a workflow for in vitro and intraoperative pathological diagnosis of liver cancer. We distinguish carcinoma tissues from adjacent non-tumour tissues in a rapid, non-disruptive, and label-free manner by using Raman spectroscopy combined with deep learning, which is validated by tissue metabolomics. This technique allows for detailed pathological identification of the cancer tissues, including subtype, differentiation grade, and tumour stage. 2D/3D Raman images of unprocessed human tissue slices with submicrometric resolution are also acquired based on visualization of molecular composition, which could assist in tumour boundary recognition and clinicopathologic diagnosis. Lastly, the potential for a portable handheld Raman system is illustrated during surgery for real-time intraoperative human liver cancer diagnosis.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Humans , Spectrum Analysis, Raman/methods , Biopsy , Liver Neoplasms/diagnosis
11.
JACS Au ; 3(1): 275, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711097

ABSTRACT

[This corrects the article DOI: 10.1021/jacsau.2c00515.].

12.
Macromol Rapid Commun ; 44(16): e2200332, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35689352

ABSTRACT

Bioderived polymers are one of many current research areas that promise a sustainable future. Due to their unique properties, the bioderived polymer polydopamine has been in the spotlight over the last decades. Its ability to adhere to virtually any surface and its stability over a wide pH range as well as in several organic solvents make it a suitable candidate for various applications like coatings and biosensors. However, strong light absorption over a broad range of wavelengths and high quenching efficiency limit its uses. Therefore, new bioderived polymers with similar features to polydopamine but without fluorescence quenching properties are highly desirable. Herein, the electropolymerization of a bioderived analog of dopamine, 3-amino-l-tyrosine, is demonstrated. The resulting polymer, poly(amino-l-tyrosine), exhibits several characteristics complementary to or even exceeding those of polydopamine and its analog, polynorepinephrine, rendering poly(amino-l-tyrosine) attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectro-electrochemistry, and electrochemical quartz crystal microbalance measurements are applied to study the electrodeposition of this material, and the resulting films are compared to polydopamine and polynorepinephrine. Impedance spectroscopy reveals increased ion permeability of poly(amino-l-tyrosine) compared to polydopamine and polynorepinephrine. Moreover, the reduced fluorescence quenching of poly(amino-l-tyrosine) supports its use as coating for biosensors and organic semiconductors.


Subject(s)
Biosensing Techniques , Polymers , Polymers/chemistry , Tyrosine , Dopamine/chemistry , Quartz Crystal Microbalance Techniques
13.
Sci Rep ; 12(1): 19982, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411331

ABSTRACT

Chemical communication in elephants has been well studied at the chemical and behavioural levels. Pheromones have been identified in the Asian elephant (Elephas maximus), including (Z)-7-dodecenyl acetate and frontalin, and their specific effects on the sexual behaviour of elephants have been accurately documented. In contrast, our knowledge on the proteins mediating detection of pheromones in elephants remains poor and superficial, with only three annotated and reliable entries in sequence databases, two of them being odorant-binding proteins (OBPs), and the third a member of von Ebner's gland (VEG) proteins. Proteomic analysis of trunk wash extract from African elephant (Loxodonta africana) identified one of the OBPs (LafrOBP1) as the main component. We therefore expressed LafrOBP1 and its Asian elephant orthologue in yeast Pichia pastoris and found that both recombinant proteins, as well as the natural LafrOBP1 are tuned to (Z)-7-dodecenyl acetate, but have no affinity for frontalin. Both the natural and recombinant LafrOBP1 carry post-translational modifications such as O-glycosylation, phosphorylation and acetylation, but as these modifications affect only a very small amount of the protein, we cannot establish their potential effects on the ligand-binding properties of OBP1.


Subject(s)
Elephants , Sex Attractants , Animals , Sex Attractants/metabolism , Elephants/metabolism , Proteomics , Pheromones/metabolism
14.
Anal Chem ; 94(40): 13820-13828, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36170602

ABSTRACT

The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate-amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate-amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte-urease assemblies, with direct implications on urea sensing.


Subject(s)
Allylamine , Biosensing Techniques , Graphite , Adenosine Triphosphate , Anions , Graphite/chemistry , Phosphates , Polyamines , Polyelectrolytes , Transistors, Electronic , Urea , Urease/chemistry
15.
Nanoscale Horiz ; 7(7): 770-778, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35695183

ABSTRACT

Oligonucleotide DNA aptamers represent an emergently important class of binding entities towards as different analytes as small molecules or even whole cells. Without requiring the canonical isolation of individual aptamers following the SELEX process, the focused polyclonal libraries prepared by this in vitro evolution and selection can directly be used to label their dedicated targets and to serve as binding molecules on surfaces. Here we report the first instance of a sensor able to discriminate between loaded and unloaded retinol-binding protein 4 (RBP4), an important biomarker for the prediction of diabetes and kidney disease. The sensor relies on two aptamer libraries tuned such that they discriminate between the protein isoforms, requiring no further sample labelling to detect RBP4 in both states. The evolution, binding properties of the libraries and the functionalization of graphene FET sensor chips are presented as well as the functionality of the resulting biosensor.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Kidney Diseases , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , Graphite/metabolism , Humans , Retinol-Binding Proteins, Plasma
16.
ACS Appl Mater Interfaces ; 14(17): 19204-19211, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35446532

ABSTRACT

Efficient and timely testing has taken center stage in the management, control, and monitoring of the current COVID-19 pandemic. Simple, rapid, cost-effective diagnostics are needed that can complement current polymerase chain reaction-based methods and lateral flow immunoassays. Here, we report the development of an electrochemical sensing platform based on single-walled carbon nanotube screen-printed electrodes (SWCNT-SPEs) functionalized with a redox-tagged DNA aptamer that specifically binds to the receptor binding domain of the SARS-CoV-2 spike protein S1 subunit. Single-step, reagentless detection of the S1 protein is achieved through a binding-induced, concentration-dependent folding of the DNA aptamer that reduces the efficiency of the electron transfer process between the redox tag and the electrode surface and causes a suppression of the resulting amperometric signal. This aptasensor is specific for the target S1 protein with a dissociation constant (KD) value of 43 ± 4 nM and a limit of detection of 7 nM. We demonstrate that the target S1 protein can be detected both in a buffer solution and in an artificial viral transport medium widely used for the collection of nasopharyngeal swabs, and that no cross-reactivity is observed in the presence of different, non-target viral proteins. We expect that this SWCNT-SPE-based format of electrochemical aptasensor will prove useful for the detection of other protein targets for which nucleic acid aptamer ligands are made available.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Electrodes , Humans , Limit of Detection , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
17.
ACS Sens ; 7(2): 504-512, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35134289

ABSTRACT

A novel multivariable system, combining a transistor with fiber optic-based surface plasmon resonance spectroscopy with the gate electrode simultaneously acting as the fiber optic sensor surface, is reported. The dual-mode sensor allows for discrimination of mass and charge contributions for binding assays on the same sensor surface. Furthermore, we optimize the sensor geometry by investigating the influence of the fiber area to transistor channel area ratio and distance. We show that larger fiber optic tip diameters are favorable for electronic and optical signals and demonstrate the reversibility of plasmon resonance wavelength shifts after electric field application. As a proof of principle, a layer-by-layer assembly of polyelectrolytes is performed to benchmark the system against multivariable sensing platforms with planar surface plasmon resonance configurations. Furthermore, the biosensing performance is assessed using a thrombin binding assay with surface-immobilized aptamers as receptors, allowing for the detection of medically relevant thrombin concentrations.


Subject(s)
Biosensing Techniques , Optical Fibers , Biosensing Techniques/methods , Electrodes , Fiber Optic Technology/methods , Thrombin/analysis
18.
Biosens Bioelectron ; 203: 114024, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35114467

ABSTRACT

Membrane proteins are among the most important drug targets. To improve drug design, it is critical to study membrane proteins. However, due to the myriad roles fulfilled by the cellular membrane, it is a highly complex environment and challenging to study. Tethered membranes reproduce the basic physicochemical properties of the cellular membrane without its inherent complexity. The high electrical resistance and stability makes them ideal to study membrane proteins, particularly ion channels. However, due to the close proximity of the membrane to the support and the reduced fluidity and high packing density, they are unsuitable to study larger membrane proteins. We present here a tethered membrane system which adresses these challenges, allowing the functional reconstitution of the odorant receptor coreceptor from Drosophila melanogaster, a tetrameric ionotropic receptor was incorporated and its sensitivity to various ligands was examined via electrochemical impedance spectroscopy and atomic force microscopy.


Subject(s)
Biosensing Techniques , Receptors, Odorant , Animals , Drosophila melanogaster/metabolism , Electrochemical Techniques , Lipid Bilayers/chemistry , Receptors, Odorant/genetics
19.
Curr Biol ; 32(5): 951-962.e7, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35065682

ABSTRACT

(E)-ß-farnesene (EBF) is an important chemical cue mediating interactions between plants, aphids, and natural enemies. This chemical has two origins, being secreted by aphid as an alarm pheromone and also produced by the attacked plants as a semiochemical attracting natural enemies. Despite the important role of this volatile chemical, little is known on the molecular mechanisms mediating the attraction of natural enemies to EBF. Here, we first verified that the larvae and adults of aphid predator hoverfly Eupeodes corollae detect and are attracted to EBF. Then, we found a neuron housed in type III basiconic sensilla of adult antenna responding to EBF. We further verified that in both adults and larvae odorant receptor EcorOR3 and odorant-binding protein EcorOBP15 mediate detection of EBF and structurally similar volatiles. Finally, we provide evidence that larvae of E. corollae may use aphid-derived EBF for prey location in the short-range, whereas adults could detect plant-derived EBF to find attacked plants from longer distances. Thus, while dissecting the molecular basis for attraction to EBF produced by two different sources, our results may find potential applications in integrated aphid management approaches.


Subject(s)
Aphids , Diptera , Sesquiterpenes , Animals , Aphids/physiology , Larva/metabolism , Pheromones/metabolism , Sesquiterpenes/metabolism
20.
Biol Rev Camb Philos Soc ; 97(1): 20-44, 2022 02.
Article in English | MEDLINE | ID: mdl-34480392

ABSTRACT

Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.


Subject(s)
Receptors, Odorant , Animals , Insect Proteins , Insecta/physiology , Mammals/metabolism , Odorants , Receptors, Odorant/genetics , Smell/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...