Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(23): 236701, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905698

ABSTRACT

Altermagnetism has emerged as a third type of collinear magnetism. In contrast to standard ferromagnets and antiferromagnets, altermagnets exhibit extra even-parity wave spin order parameters resulting in a spin splitting of electronic bands in momentum space. In real space, sublattices of opposite spin polarization are anisotropic and related by rotational symmetry. In the hitherto identified altermagnetic candidate materials, the anisotropies arise from the local crystallographic symmetry. Here, we show that altermagnetism can also form as an interaction-induced electronic instability in a lattice without the crystallographic sublattice anisotropy. We provide a microscopic example of a two-orbital model showing that the coexistence of staggered antiferromagnetic and orbital order can realize robust altermagnetism. We quantify the spin-splitter conductivity as a key experimental observable and discuss material candidates for the interaction-induced realization of altermagnetism.

2.
Nature ; 621(7978): 276-281, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37532938

ABSTRACT

Following nearly a century of research, it remains a puzzle that the low-lying excitations of metals are remarkably well explained by effective single-particle theories of non-interacting bands1-4. The abundance of interactions in real materials raises the question of direct spectroscopic signatures of phenomena beyond effective single-particle, single-band behaviour. Here we report the identification of quantum oscillations (QOs) in the three-dimensional topological semimetal CoSi, which defy the standard description in two fundamental aspects. First, the oscillation frequency corresponds to the difference of semiclassical quasiparticle (QP) orbits of two bands, which are forbidden as half of the trajectory would oppose the Lorentz force. Second, the oscillations exist up to above 50 K, in strong contrast to all other oscillatory components, which vanish below a few kelvin. Our findings are in excellent agreement with generic model calculations of QOs of the QP lifetime (QPL). Because the only precondition for their existence is a nonlinear coupling of at least two electronic orbits, for example, owing to QP scattering on defects or collective excitations, such QOs of the QPL are generic for any metal featuring Landau quantization with several orbits. They are consistent with certain frequencies in topological semimetals5-9, unconventional superconductors10,11, rare-earth compounds12-14 and Rashba systems15, and permit to identify and gauge correlation phenomena, for example, in two-dimensional materials16,17 and multiband metals18.

3.
Phys Rev Lett ; 130(22): 226701, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327444

ABSTRACT

Quantum spin liquids subject to a periodic drive can display fascinating nonequilibrium heating behavior because of their emergent fractionalized quasiparticles. Here, we investigate a driven Kitaev honeycomb model and examine the dynamics of emergent Majorana matter and Z_{2} flux excitations. We uncover a distinct two-step heating profile-dubbed fractionalized prethermalization-and a quasistationary state with vastly different temperatures for the matter and the flux sectors. We argue that this peculiar prethermalization behavior is a consequence of fractionalization. Furthermore, we discuss an experimentally feasible protocol for preparing a zero-flux initial state of the Kiteav honeycomb model with a low energy density, which can be used to observe fractionalized prethermalization in quantum information processing platforms.


Subject(s)
Cognition , Food , Heating
4.
Phys Rev Lett ; 129(12): 120605, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179155

ABSTRACT

Heating to high-lying states strongly limits the experimental observation of driving induced nonequilibrium phenomena, particularly when the drive has a broad spectrum. Here we show that, for entire families of structured random drives known as random multipolar drives, particle excitation to higher bands can be well controlled even away from a high-frequency driving regime. This opens a window for observing drive-induced phenomena in a long-lived prethermal regime in the lowest band.

5.
Nat Commun ; 13(1): 3152, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672292

ABSTRACT

Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric spin valve experiments have thus far provided global information on such devices, while leaving the local interplay between symmetry breaking, charge flow across the heterointerface and aspects of topology unexplored. Here, we probe the gate-tunable local spin polarisation in current-driven graphene/WTe2 heterostructures through magneto-optical Kerr microscopy. Even for a nominal in-plane transport, substantial out-of-plane spin accumulation is induced by a corresponding out-of-plane current flow. We present a theoretical model which fully explains the gate- and bias-dependent onset and spatial distribution of the intense Kerr signal as a result of a non-linear anomalous Hall effect in the heterostructure, which is enabled by its reduced point group symmetry. Our findings unravel the potential of 2D heterostructure engineering for harnessing topological phenomena for spintronics, and constitute an important step toward nanoscale, electrical spin control.

6.
Phys Rev Lett ; 127(14): 140602, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652172

ABSTRACT

Systems subject to a high-frequency drive can spend an exponentially long time in a prethermal regime, in which novel phases of matter with no equilibrium counterpart can be realized. Because of the notorious computational challenges of quantum many-body systems, numerical investigations in this direction have remained limited to one spatial dimension, in which long-range interactions have been proven a necessity. Here, we show that prethermal nonequilibrium phases of matter are not restricted to the quantum domain. Studying the Hamiltonian dynamics of a large three-dimensional lattice of classical spins, we provide the first numerical proof of prethermal phases of matter in a system with short-range interactions. Concretely, we find higher-order as well as fractional discrete time crystals breaking the time-translational symmetry of the drive with unexpectedly large integer as well as fractional periods. Our work paves the way toward the exploration of novel prethermal phenomena by means of classical Hamiltonian dynamics with virtually no limitations on the system's geometry or size, and thus with direct implications for experiments.

7.
Phys Rev Lett ; 127(15): 150601, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678002

ABSTRACT

Quantum many-body scars have been put forward as counterexamples to the eigenstate thermalization hypothesis. These atypical states are observed in a range of correlated models as long-lived oscillations of local observables in quench experiments starting from selected initial states. The long-time memory is a manifestation of quantum nonergodicity generally linked to a subextensive generation of entanglement entropy, the latter of which is widely used as a diagnostic for identifying quantum many-body scars numerically as low entanglement outliers. Here we show that by adding kinetic constraints to a fractionalized orthogonal metal, we can construct a minimal model with orthogonal quantum many-body scars leading to persistent oscillations with infinite lifetime coexisting with rapid volume-law entanglement generation. Our example provides new insights into the link between quantum ergodicity and many-body entanglement while opening new avenues for exotic nonequilibrium dynamics in strongly correlated multicomponent quantum systems.

8.
Phys Rev E ; 104(3-2): 035309, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654120

ABSTRACT

To get the best possible results from current quantum devices error mitigation is essential. In this work we present a simple but effective error mitigation technique based on the assumption that noise in a deep quantum circuit is well described by global depolarizing error channels. By measuring the errors directly on the device, we use an error model ansatz to infer error-free results from noisy data. We highlight the effectiveness of our mitigation via two examples of recent interest in quantum many-body physics: entanglement measurements and real-time dynamics of confinement in quantum spin chains. Our technique enables us to get quantitative results from the IBM quantum computers showing signatures of confinement, i.e., we are able to extract the meson masses of the confined excitations which were previously out of reach. Additionally, we show the applicability of this mitigation protocol in a wider setting with numerical simulations of more general tasks using a realistic error model. Our protocol is device-independent, simply implementable, and leads to large improvements in results if the global errors are well described by depolarization.

9.
Phys Rev Lett ; 127(5): 050602, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397234

ABSTRACT

The nonequilibrium quantum dynamics of closed many-body systems is a rich yet challenging field. While recent progress for periodically driven (Floquet) systems has yielded a number of rigorous results, our understanding on quantum many-body systems driven by rapidly varying but aperiodic and quasiperiodic driving is still limited. Here, we derive rigorous, nonperturbative, bounds on the heating rate in quantum many-body systems under Thue-Morse quasiperiodic driving and under random multipolar driving, the latter being a tunably randomized variant of the former. In the process, we derive a static effective Hamiltonian that describes the transient prethermal state, including the dynamics of local observables. Our bound for Thue-Morse quasiperiodic driving suggests that the heating time scales like (ω/g)^{-C ln(ω/g)} with a positive constant C and a typical energy scale g of the Hamiltonian, in agreement with our numerical simulations.

10.
Sci Rep ; 11(1): 11577, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078969

ABSTRACT

Confinement describes the phenomenon when the attraction between two particles grows with their distance, most prominently found in quantum chromodynamics (QCD) between quarks. In condensed matter physics, confinement can appear in quantum spin chains, for example, in the one dimensional transverse field Ising model (TFIM) with an additional longitudinal field, famously observed in the quantum material cobalt niobate or in optical lattices. Here, we establish that state-of-the-art quantum computers have reached capabilities to simulate confinement physics in spin chains. We report quantitative confinement signatures of the TFIM on an IBM quantum computer observed via two distinct velocities for information propagation from domain walls and their mesonic bound states. We also find the confinement induced slow down of entanglement spreading by implementing randomized measurement protocols for the second order Rényi entanglement entropy. Our results are a crucial step for probing non-perturbative interacting quantum phenomena on digital quantum computers beyond the capabilities of classical hardware.

11.
Nat Commun ; 12(1): 2341, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879787

ABSTRACT

Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different 'higher-order' discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions.

12.
Nat Commun ; 12(1): 1061, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594069

ABSTRACT

Stochastic processes govern the time evolution of a huge variety of realistic systems throughout the sciences. A minimal description of noisy many-particle systems within a Markovian picture and with a notion of spatial dimension is given by probabilistic cellular automata, which typically feature time-independent and short-ranged update rules. Here, we propose a simple cellular automaton with power-law interactions that gives rise to a bistable phase of long-ranged directed percolation whose long-time behaviour is not only dictated by the system dynamics, but also by the initial conditions. In the presence of a periodic modulation of the update rules, we find that the system responds with a period larger than that of the modulation for an exponentially (in system size) long time. This breaking of discrete time translation symmetry of the underlying dynamics is enabled by a self-correcting mechanism of the long-ranged interactions which compensates noise-induced imperfections. Our work thus provides a firm example of a classical discrete time crystal phase of matter and paves the way for the study of novel non-equilibrium phases in the unexplored field of driven probabilistic cellular automata.

13.
Phys Rev Lett ; 126(4): 040601, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576680

ABSTRACT

Driven quantum systems may realize novel phenomena absent in static systems, but driving-induced heating can limit the timescale on which these persist. We study heating in interacting quantum many-body systems driven by random sequences with n-multipolar correlations, corresponding to a polynomially suppressed low-frequency spectrum. For n≥1, we find a prethermal regime, the lifetime of which grows algebraically with the driving rate, with exponent 2n+1. A simple theory based on Fermi's golden rule accounts for this behavior. The quasiperiodic Thue-Morse sequence corresponds to the n→∞ limit and, accordingly, exhibits an exponentially long-lived prethermal regime. Despite the absence of periodicity in the drive, and in spite of its eventual heat death, the prethermal regime can host versatile nonequilibrium phases, which we illustrate with a random multipolar discrete time crystal.

14.
Phys Rev Lett ; 125(6): 067201, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845662

ABSTRACT

We provide an exact study of dynamical correlations for the quantum spin-orbital liquid phases of an SU(2)-symmetric Kitaev honeycomb lattice model. We show that the spin dynamics in this Kugel-Khomskii type model is exactly the density-density correlation function of S=1 fermionic magnons, which could be probed in resonant inelastic x-ray scattering experiments. We predict the characteristic signatures of spin-orbital fractionalization in inelastic scattering experiments and compare them to the ones of the spin-anisotropic Kitaev honeycomb spin liquid. In particular, the resonant inelastic x-ray scattering response shows a characteristic momentum dependence directly related to the dispersion of fermionic excitations. The neutron scattering cross section displays a mixed response of fermionic magnons as well as spin-orbital excitations. The latter has a bandwidth of broad excitations and a vison gap that is three times larger than that of the spin-1=2 Kitaev model.

15.
Phys Rev Lett ; 124(16): 160604, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32383938

ABSTRACT

The concept of quantum many-body scars has recently been put forward as a route to describe weak ergodicity breaking and violation of the eigenstate thermalization hypothesis. We propose a simple setup to generate quantum many-body scars in a doubly modulated Bose-Hubbard system which can be readily implemented in cold atomic gases. The dynamics are shown to be governed by kinetic constraints which appear via density-assisted tunneling in a high-frequency expansion. We find the optimal driving parameters for the kinetically constrained hopping which leads to small isolated subspaces of scared eigenstates. The experimental signatures and the transition to fully thermalizing behavior as a function of driving frequency are analyzed.

16.
Phys Rev Lett ; 123(23): 237201, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868493

ABSTRACT

In the pursuit of developing routes to enhance magnetic Kitaev interactions in α-RuCl_{3}, as well as probing doping effects, we investigate the electronic properties of α-RuCl_{3} in proximity to graphene. We study α-RuCl_{3}/graphene heterostructures via ab initio density functional theory calculations, Wannier projection, and nonperturbative exact diagonalization methods. We show that α-RuCl_{3} becomes strained when placed on graphene and charge transfer occurs between the two layers, making α-RuCl_{3} (graphene) lightly electron doped (hole doped). This gives rise to an insulator-to-metal transition in α-RuCl_{3} with the Fermi energy located close to the bottom of the upper Hubbard band of the t_{2g} manifold. These results suggest the possibility of realizing metallic and even exotic superconducting states. Moreover, we show that in the strained α-RuCl_{3} monolayer the Kitaev interactions are enhanced by more than 50% compared to the unstrained bulk structure. Finally, we discuss scenarios related to transport experiments in α-RuCl_{3}/graphene heterostructures.

17.
Phys Rev Lett ; 123(15): 150601, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31702308

ABSTRACT

We investigate the out-of-equilibrium properties of a system of interacting bosons in a ring lattice. We present a Floquet driving that induces clockwise (counterclockwise) circulation of the particles among the odd (even) sites of the ring which can be mapped to a fully connected model of clocks of two counterrotating species. The clocklike motion of the particles is at the core of a period-n discrete time crystal where L=2n is the number of lattice sites. In the presence of a "staircaselike" on-site potential, we report the emergence of a second characteristic timescale in addition to the period n-tupling. This new timescale depends on the microscopic parameters of the Hamiltonian and is incommensurate with the Floquet period, underpinning a dynamical phase we call "time quasicrystal." The rich dynamical phase diagram also features a thermal phase and an oscillatory phase, all of which we investigate and characterize. Our simple, yet rich model can be realized with state-of-the-art ultracold atoms experiments.

18.
Nat Commun ; 10(1): 3937, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31477725

ABSTRACT

Topology is quickly becoming a cornerstone in our understanding of electronic systems. Like their electronic counterparts, bosonic systems can exhibit a topological band structure, but in real materials it is difficult to ascertain their topological nature, as their ground state is a simple condensate or the vacuum, and one has to rely instead on excited states, for example a characteristic thermal Hall response. Here we propose driving a topological magnon insulator with an electromagnetic field and show that this causes edge mode instabilities and a large non-equilibrium steady-state magnon edge current. Building on this, we discuss several experimental signatures that unambiguously establish the presence of topological magnon edge modes. Furthermore, our amplification mechanism can be employed to power a topological travelling-wave magnon amplifier and topological magnon laser, with applications in magnon spintronics. This work thus represents a step toward functional topological magnetic materials.

19.
Phys Rev Lett ; 123(8): 086602, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31491199

ABSTRACT

Out-of-time-ordered correlators (OTOCs) describe information scrambling under unitary time evolution, and provide a useful probe of the emergence of quantum chaos. Here we calculate OTOCs for a model of disorder-free localization whose exact solubility allows us to study long-time behavior in large systems. Remarkably, we observe logarithmic spreading of correlations, qualitatively different to both thermalizing and Anderson localized systems. Rather, such behavior is normally taken as a signature of many-body localization, so that our findings for an essentially noninteracting model are surprising. We provide an explanation for this unusual behavior, and suggest a novel Loschmidt echo protocol as a probe of correlation spreading. We show that the logarithmic spreading of correlations probed by this protocol is a generic feature of localized systems, with or without interactions.

20.
Phys Rev Lett ; 122(4): 047202, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768346

ABSTRACT

The 5d-electron honeycomb compound H_{3}LiIr_{2}O_{6} [K. Kitagawa et al., Nature (London) 554, 341 (2018)NATUAS0028-083610.1038/nature25482] exhibits an apparent quantum spin liquid state. In this intercalated spin-orbital compound, a remarkable pileup of low-energy states was experimentally observed in specific heat and spin relaxation. We show that a bond-disordered Kitaev model can naturally account for this phenomenon, suggesting that disorder plays an essential role in its theoretical description. In the exactly soluble Kitaev model, we obtain, via spin fractionalization, a random bipartite hopping problem of Majorana fermions in a random flux background. This has a divergent low-energy density of states of the required power-law form N(E)∝E^{-ν} with a drifting exponent which takes on the value ν≈1/2 for relatively strong bond disorder. Breaking time-reversal symmetry removes the divergence of the density of states, as does applying a magnetic field in experiment. We discuss the implication of our scenario, both for future experiments and from a broader perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...