Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37754698

ABSTRACT

Globalization and climate change are key drivers for arboviral and parasitic infectious diseases to expand geographically, posing a growing threat to human health and biodiversity. New non-pesticidal approaches are urgently needed because of increasing insecticide resistance and the negative human and environmental health impacts of synthetic pyrethroids used for fogging. Here, we report the complete and rapid removal of two mosquito species (Aedes aegypti L. and Culex quinquefasciatus Say), both arboviral disease vectors, with odor-baited mosquito traps (at a density of 10 traps/hectare) from a 7.2-hectare island in the Philippines in just 5 months. This rapid elimination of mosquitoes from an island is remarkable and provides further proof that high-density mosquito trapping can play a significant role in mosquito- and vector-borne disease elimination in small islands around the world.

2.
Malar J ; 15(1): 404, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27515306

ABSTRACT

In spite of massive progress in the control of African malaria since the turn of the century, there is a clear and recognized need for additional tools beyond long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS) of insecticides, to progress towards elimination. Moreover, widespread and intensifying insecticide resistance requires alternative control agents and delivery systems to enable development of effective insecticide resistance management strategies. This series of articles presents a novel concept for malaria vector control, the 'eave tube', which may fulfil these important criteria. From its conceptualization to laboratory and semi-field testing, to demonstration of potential for implementation, the stepwise development of this new vector control approach is described. These studies suggest eave tubes (which comprise a novel way of delivering insecticides plus screening to make the house more 'mosquito proof') could be a viable, cost-effective, and acceptable control tool for endophilic and endophagic anophelines, and possibly other (nuisance) mosquitoes. The approach could be applicable in a wide variety of housing in sub-Saharan Africa, and possibly beyond, for vectors that use the eave as their primary house entry point. The results presented in these articles were generated during an EU-FP7 funded project, the mosquito contamination device (MCD) project, which ran between 2012 and 2015. This was a collaborative project undertaken by vector biologists, product developers, modellers, materials scientists, and entrepreneurs from five different countries.


Subject(s)
Disease Transmission, Infectious/prevention & control , Housing , Malaria/prevention & control , Mosquito Control/methods , Africa South of the Sahara , Animals , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...