Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Article in English | MEDLINE | ID: mdl-38108003

ABSTRACT

Peer-Led Team Learning (PLTL) is a pedagogical approach that has been shown to benefit all students, especially underrepresented minority students and peer leaders in Science, Technology, Engineering, and Mathematics (STEM) disciplines. In this work, we present results from our study of the impact of PLTL on our peer leaders from a controlled implementation in general biology, general chemistry, and statistics courses at a Hispanic-serving, minority-serving institution. More specifically, we have measured our PLTL program's impact on our peer leaders' skill development, engagement with the subject material, and sense of belonging as peer leaders. Weekly peer leader reflections analyzed using the Dreyfus model exhibited a consistent set of skills, while those analyzed using the Pazos model revealed a consistent type of student-peer leader interactions, allowing for peer leaders to be assigned to specific levels in the hierarchy of each of the models. Analysis of eight skill-based Likert-scale questions on the SALG survey showed an overall positive shift at the highest level. Independent of the skill or interaction level of the peer leader, we observed several instances of peer leaders acknowledging development in their communication skills, sincere attempts at creating an engaging classroom, and a deep investment in their student's success. Peer leaders also reported improvements in understanding of the subjects they were teaching, wanting to persevere and solve problems independently, and feeling passionate about helping other students.

2.
Semin Arthritis Rheum ; 51(1): 278-284, 2021 02.
Article in English | MEDLINE | ID: mdl-33412435

ABSTRACT

Pain is a manifestation of rheumatoid arthritis (RA) that is mediated by inflammatory and non-inflammatory mechanisms and negatively affects quality of life. Recent findings from a Phase 3 clinical trial showed that patients with RA who were treated with a Janus kinase 1 (Jak1) and Janus kinase 2 (Jak2) inhibitor achieved significantly greater improvements in pain than those treated with a tumor necrosis factor blocker; both treatments resulted in similar changes in standard clinical measures and markers of inflammation. These findings suggest that Jak1 and Jak2 inhibition may relieve pain in RA caused by inflammatory and non-inflammatory mechanisms and are consistent with the overarching involvement of the Jak-signal transducer and activator of transcription (Jak/STAT) pathway in mediating the action, expression, and regulation of a multitude of pro- and anti-inflammatory cytokines. In this review, we provide an overview of pain in RA, the underlying importance of cytokines regulated directly or indirectly by the Jak/STAT pathway, and therapeutic targeting of the Jak/STAT pathway in RA. As highlighted herein, multiple cytokines directly or indirectly regulated by the Jak/STAT pathway play important roles in mediating various mechanisms underlying pain in RA. Having a better understanding of these mechanisms may help clinicians make treatment decisions that optimize the control of inflammation and pain.


Subject(s)
Arthritis, Rheumatoid , Quality of Life , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Humans , Janus Kinases , Pain/drug therapy , Pain/etiology , Transducers
3.
J Pharmacol Exp Ther ; 369(3): 345-363, 2019 06.
Article in English | MEDLINE | ID: mdl-30910921

ABSTRACT

Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.


Subject(s)
Calcium Channels/metabolism , Chronic Pain/drug therapy , Chronic Pain/metabolism , Molecular Targeted Therapy , Receptors, AMPA/metabolism , Animals , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Chronic Pain/physiopathology , Male , Neuronal Plasticity/drug effects , Nociception/drug effects , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Tissue Distribution
4.
Mol Pain ; 15: 1744806919837104, 2019.
Article in English | MEDLINE | ID: mdl-30803321

ABSTRACT

Previously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126 completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons. U0126 substantially reduced repetitive firing in small dorsal root ganglion neurons exposed to inflammatory mediators, consistent with prevention of resurgent current amplitude increases. The protein kinase C inhibitor Bisindolylmaleimide I also showed attenuating effects on resurgent currents, although to a lesser extent compared to extracellular signal-regulated kinases inhibition. These results indicate a critical role of extracellular signal-regulated kinases signaling in modulating resurgent currents and membrane excitability in dorsal root ganglion neurons treated with inflammatory mediators. It is also suggested that targeting extracellular signal-regulated kinases-resurgent currents might be a useful strategy to reduce inflammatory pain.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Protein Kinase C/metabolism , Action Potentials/drug effects , Animals , Electrophysiology , Ganglia, Spinal/drug effects , Male , Membrane Potentials/drug effects , Rats , Rats, Sprague-Dawley , Sodium/metabolism , Tetrodotoxin/pharmacology
5.
Mol Pain ; 15: 1744806919836570, 2019.
Article in English | MEDLINE | ID: mdl-30784351

ABSTRACT

Migraine is triggered by poor air quality and odors through unknown mechanisms. Activation of the trigeminovascular pathway by environmental irritants may occur via activation of transient receptor potential ankyrin 1 (TRPA1) receptors on nasal trigeminal neurons, but how that results in peripheral and central sensitization is unclear. The anatomy of the trigeminal ganglion suggests that noxious nasal stimuli are not being transduced to the meninges by axon reflex but likely through intraganglionic transmission. Consistent with this concept, we injected calcitonin gene-related peptide, adenosine triphosphate, or glutamate receptor antagonists or a gap junction channel blocker directly and exclusively into the trigeminal ganglion and blocked meningeal blood flow changes in response to acute nasal TRP agonists. Previously, we observed chronic sensitization of the trigeminovascular pathway after acrolein exposure, a known TRPA1 receptor agonist. To explore the mechanism of this sensitization, we utilized laser dissection microscopy to separately harvest nasal and meningeal trigeminal neuron populations in the absence or presence of acrolein exposure. mRNA levels of neurotransmitters important in migraine were then determined by reverse transcription polymerase chain reaction. TRPA1 message levels were significantly increased in meningeal cell populations following acrolein exposure compared to room air exposure. This was specific to TRPA1 message in meningeal cell populations as changes were not observed in either nasal trigeminal cell populations or dorsal root ganglion populations. Taken together, these data suggest an important role for intraganglionic transmission in acute activation of the trigeminovascular pathway. It also supports a role for upregulation of TRPA1 receptors in peripheral sensitization and a possible mechanism for chronification of migraine after environmental irritant exposure.


Subject(s)
Trigeminal Ganglion/metabolism , Acrolein/pharmacology , Animals , Cells, Cultured , Electrophysiology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , TRPA1 Cation Channel/agonists , TRPA1 Cation Channel/metabolism , Trigeminal Ganglion/cytology , Trigeminal Ganglion/drug effects
6.
Br J Pharmacol ; 174(9): 822-835, 2017 05.
Article in English | MEDLINE | ID: mdl-28177520

ABSTRACT

BACKGROUND AND PURPOSE: A body of evidence suggests activation of metabotropic glutamate 2/3 (mGlu2/3 ) receptors would be an effective analgesic in chronic pain conditions. Thus, the analgesic properties of a novel mGlu2/3 receptor agonist prodrug were investigated. EXPERIMENTAL APPROACH: After oral absorption, the prodrug LY2969822 rapidly converts to the brain penetrant, potent and subtype-selective mGlu2/3 receptor agonist LY2934747. Behavioural assessments of allodynia, hyperalgesia and nocifensive behaviours were determined in preclinical pain models after administration of LY2969822 0.3-10 mg·kg-1 . In addition, the ability of i.v. LY2934747 to modulate dorsal horn spinal cord wide dynamic range (WDR) neurons in spinal nerve ligated (SNL) rats was assessed. KEY RESULTS: Following treatment with LY2934747, the spontaneous activity and electrically-evoked wind-up of WDR neurons in rats that had undergone spinal nerve ligation and developed mechanical allodynia were suppressed. In a model of sensitization, orally administered LY2969822 prevented the nociceptive behaviours induced by an intraplantar injection of formalin. The on-target nature of this effect was confirmed by blockade with an mGlu2/3 receptor antagonist. LY2969822 prevented capsaicin-induced tactile hypersensitivity, reversed the SNL-induced tactile hypersensitivity and reversed complete Freund's adjuvant - induced mechanical hyperalgesia. The mGlu2/3 receptor agonist prodrug demonstrated efficacy in visceral pain models, including a colorectal distension model and partially prevented the nocifensive behaviours in the mouse acetic acid writhing model. CONCLUSIONS AND IMPLICATIONS: Following oral administration of the prodrug LY2969822, the mGlu2/3 receptor agonist LY2934747 was formed and this attenuated pain behaviours across a broad range of preclinical pain models.


Subject(s)
Bridged Bicyclo Compounds/administration & dosage , Disease Models, Animal , Hyperalgesia/drug therapy , Prodrugs/administration & dosage , Receptors, Metabotropic Glutamate/agonists , Spiro Compounds/administration & dosage , Administration, Oral , Animals , Bridged Bicyclo Compounds/chemistry , Hyperalgesia/physiopathology , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Pain Measurement/methods , Prodrugs/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/physiology , Spiro Compounds/chemistry , Treatment Outcome
7.
J Pharmacol Exp Ther ; 360(1): 117-128, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27811173

ABSTRACT

Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3-20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30-240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists.


Subject(s)
Behavior, Animal/drug effects , Gene Knock-In Techniques , Isoquinolines/pharmacology , Locomotion/drug effects , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Tachyphylaxis , Adamantane/analogs & derivatives , Adamantane/pharmacology , Allosteric Regulation/drug effects , Animals , Benzopyrans/pharmacology , Dose-Response Relationship, Drug , Female , HEK293 Cells , Humans , Isoquinolines/adverse effects , Male , Mice , Protein Transport/drug effects , Receptors, Dopamine D1/agonists
8.
Pharmaceuticals (Basel) ; 9(3)2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27618069

ABSTRACT

Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP (Transient Receptor Potential) super-family. It is a relatively underexplored member of the thermo-TRP sub-family (Figure 1), however, genetic mutations and use of gene knock-outs and selective pharmacological tools are helping to provide insights into its role and therapeutic potential. TRPV3 is highly expressed in skin, where it is implicated in skin physiology and pathophysiology, thermo-sensing and nociception. Gain of function TRPV3 mutations in rodent and man have enabled the role of TRPV3 in skin health and disease to be particularly well defined. Pre-clinical studies provide some rationale to support development of TRPV3 antagonists for therapeutic application for the treatment of inflammatory skin conditions, itch and pain. However, to date, only one compound directed towards block of the TRPV3 receptor (GRC15300) has progressed into clinical trials. Currently, there are no known clinical trials in progress employing a TRPV3 antagonist.

9.
J Med Chem ; 58(4): 1776-94, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25602126

ABSTRACT

As part of our ongoing research to identify novel agents acting at metabotropic glutamate 2 (mGlu2) and 3 (mGlu3) receptors, we have previously reported the identification of the C4α-methyl analog of mGlu2/3 receptor agonist 1 (LY354740). This molecule, 1S,2S,4R,5R,6S-2-amino-4-methylbicyclo[3.1.0]hexane-2,6-dicarboxylate 2 (LY541850), exhibited an unexpected mGlu2 agonist/mGlu3 antagonist pharmacological profile, whereas the C4ß-methyl diastereomer (3) possessed dual mGlu2/3 receptor agonist activity. We have now further explored this structure-activity relationship through the preparation of cyclic and acyclic C4-disubstituted analogs of 1, leading to the identification of C4-spirocyclopropane 5 (LY2934747), a novel, potent, and systemically bioavailable mGlu2/3 receptor agonist which exhibits both antipsychotic and analgesic properties in vivo. In addition, through the combined use of protein-ligand X-ray crystallography employing recombinant human mGlu2/3 receptor amino terminal domains, molecular modeling, and site-directed mutagenesis, a molecular basis for the observed pharmacological profile of compound 2 is proposed.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Receptors, Metabotropic Glutamate/agonists , Spiro Compounds/pharmacology , Animals , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/metabolism , Crystallography, X-Ray , Humans , Male , Models, Molecular , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics , Spiro Compounds/chemistry , Spiro Compounds/metabolism
10.
FEBS Lett ; 588(21): 3964-9, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25240195

ABSTRACT

Resurgent sodium currents likely play a role in modulating neuronal excitability. Here we studied whether protein kinase C (PKC) activation can increase resurgent currents produced by the human sodium channel hNav1.7. We found that a PKC agonist significantly enhanced hNav1.7-mediated resurgent currents and this was prevented by PKC antagonists. The enhancing effects were replicated by two phosphorylation-mimicking mutations and were prevented by a phosphorylation-deficient mutation at a conserved PKC phosphorylation site (Serine 1479). Our results suggest that PKC can increase sodium resurgent currents through phosphorylation of a conserved Serine residue located in the domain III-IV linker of sodium channels.


Subject(s)
Electrophysiological Phenomena , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Protein Kinase C/metabolism , Serine , Conserved Sequence , Enzyme Activation , HEK293 Cells , Humans , Ion Channel Gating , Mutagenesis, Site-Directed , Mutation , NAV1.7 Voltage-Gated Sodium Channel/genetics , Phosphorylation , Protein Structure, Tertiary , Sodium/metabolism
11.
J Neurosci Methods ; 233: 50-3, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24928434

ABSTRACT

BACKGROUND: The rat L5/L6 spinal nerve ligation model (SNL) has been widely used to investigate putative analgesics. Pursuit of novel therapies in preclinical settings requires models with consistent and reproducible phenotypes. NEW METHOD: We assessed the effects of repetitive stimulation of the hindpaws of SNL and Sham surgery rats during the 2 weeks immediately after surgery on the overall rate of achieving tactile hypersensitivity, as well as the magnitude of the hypersensitivity compared to unprimed rats. Beginning on day 2 post-surgery, and continuing on alternate days for a total of seven sessions, animals underwent light brushing/tapping (termed priming) of the hindpaws ipsilateral and contralateral to surgery. RESULTS: Priming the ipsilateral hindpaw enhanced the magnitude of tactile hypersensitivity such that the baseline withdrawal threshold (BWT) for primed SNL animals was significantly lower than unprimed SNL animals over post-surgical days 15-29. BWT was not different between primed and unprimed Sham rats. The percentage of SNL primed animals meeting the a priori criterion for tactile hypersensitivity of paw withdrawal threshold less than 2.0 grams was 98.9%±1.1%. COMPARISON WITH EXISTING METHOD: SNL rats that did not receive stimulation (unprimed) showed significantly higher baseline hypersensitivity when evaluated on days 15-29, exemplified by only 34.5%±7.2% meeting the established <2.0g criterion. CONCLUSION: Our data indicate that tactile priming during the 2 weeks immediately after SNL surgery enhances the magnitude of tactile hypersensitivity in the SNL model, and provide an optimized assay for evaluating putative analgesics.


Subject(s)
Disease Models, Animal , Hyperalgesia/physiopathology , Physical Stimulation/methods , Spinal Nerves/injuries , Spinal Nerves/physiopathology , Amines/pharmacology , Analgesics/pharmacology , Animals , Cyclohexanecarboxylic Acids/pharmacology , Gabapentin , Hindlimb/physiopathology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Ligation , Lumbar Vertebrae , Male , Pain Measurement , Pain Threshold/physiology , Random Allocation , Rats, Sprague-Dawley , Sensitivity and Specificity , Spinal Nerves/drug effects , Touch , gamma-Aminobutyric Acid/pharmacology
12.
J Neurosci ; 34(21): 7190-7, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24849353

ABSTRACT

Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. Here we report a novel TTX-resistant (TTX-R) resurgent current recorded from rat DRG neurons. The TTX-R resurgent currents are similar to classic TTX-S resurgent currents in many respects, but not all. As with TTX-S resurgent currents, they are activated by membrane repolarization, inhibited by lidocaine, and enhanced by a peptide-mimetic of the ß4 sodium channel subunit intracellular domain. However, the TTX-R resurgent currents exhibit much slower kinetics, occur at more depolarized voltages, and are sensitive to the Nav1.8 blocker A803467. Moreover, coimmunoprecipitation experiments from rat DRG lysates indicate the endogenous sodium channel ß4 subunits associate with Nav1.8 in DRG neurons. These results suggest that slow TTX-R resurgent currents in DRG neurons are mediated by Nav1.8 and are generated by the same mechanism underlying TTX-S resurgent currents. We also show that both TTX-S and TTX-R resurgent currents in DRG neurons are enhanced by inflammatory mediators. Furthermore, the ß4 peptide increased excitability of small DRG neurons in the presence of TTX. We propose that these slow TTX-R resurgent currents contribute to the membrane excitability of nociceptive DRG neurons under normal conditions and that enhancement of both types of resurgent currents by inflammatory mediators could contribute to sensory neuronal hyperexcitability associated with inflammatory pain.


Subject(s)
Inflammation Mediators/pharmacology , Membrane Potentials/drug effects , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Aniline Compounds/pharmacology , Animals , Biophysics , Cells, Cultured , Electric Stimulation , Furans/pharmacology , Ganglia, Spinal/cytology , Immunoprecipitation , Lidocaine/pharmacology , NAV1.8 Voltage-Gated Sodium Channel/chemistry , Patch-Clamp Techniques , Peptides/pharmacology , Protein Subunits/metabolism , Rats , Rats, Sprague-Dawley
13.
Neuropharmacology ; 77: 131-44, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24071566

ABSTRACT

Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results. Herein, we report for the first time the in vitro and in vivo pharmacological profile of a novel, potent kappa opioid receptor antagonist with excellent selectivity over other receptors and markedly improved drug-like properties over existing research tools. LY2456302 exhibits canonical pharmacokinetic properties that are favorable for clinical development, with rapid absorption (t(max): 1-2 h) and good oral bioavailability (F = 25%). Oral LY2456302 administration selectively and potently occupied central kappa opioid receptors in vivo (ED50 = 0.33 mg/kg), without evidence of mu or delta receptor occupancy at doses up to 30 mg/kg. LY2456302 potently blocked kappa-agonist-mediated analgesia and disruption of prepulse inhibition, without affecting mu-agonist-mediated effects at doses >30-fold higher. Importantly, LY2456302 did not block kappa-agonist-induced analgesia one week after administration, indicating lack of long-lasting pharmacodynamic effects. In contrast to the nonselective opioid antagonist naltrexone, LY2456302 produced antidepressant-like effects in the mouse forced swim test and enhanced the effects of imipramine and citalopram. LY2456302 reduced ethanol self-administration in alcohol-preferring (P) rats and, unlike naltrexone, did not exhibit significant tolerance upon 4 days of repeated dosing. LY2456302 is a centrally-penetrant, potent, kappa-selective antagonist with pharmacokinetic properties favorable for clinical development and activity in animal models predictive of efficacy in mood and addictive disorders.


Subject(s)
Benzamides/pharmacology , Depression/drug therapy , Narcotic Antagonists/pharmacology , Pyrrolidines/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Reflex, Startle/drug effects , Sensory Gating/drug effects , Analgesia , Animals , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Disease Models, Animal , Ethanol/administration & dosage , Male , Mice , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/therapeutic use , Pyrrolidines/pharmacokinetics , Pyrrolidines/therapeutic use , Rats , Self Administration
14.
Curr Pharm Biotechnol ; 12(10): 1627-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21466450

ABSTRACT

Most cancer patients will experience moderate to severe pain and/or neuropathy during the course of their disease. Recent improvements in the primary treatment of cancer have increased the life span of cancer patients, but not necessarily their quality of life (QoL). The pain and suffering cancer patients experience may be the result of the tumor itself, or the treatments required to arrest tumor growth and progression. In contrast to the rapid, highly mechanistic, tailored medicine approach used to target and treat the primary tumor burden, the evolution of pain and other supportive treatment approaches for cancer patients have been slow to non-existent. A movement is emerging to use more rational mechanistic approaches to the treatment of pain created by cancer and chemotherapeutics. This review briefly describes the most severe and debilitating symptoms (endophenotypes) from the cancer patient's perspective, the biochemical/neurobiological sequalae associated with tumor growth and therapies designed to arrest tumor progression, and highlights some promising pharmacologic mechanisms that may be used to treat cancer-related pain, sensory neuropathies, and associated endophenotypes. Delivering improved broader spectrum supportive care medicines to cancer patients will fill a significant unmet need and enable them to live productive, fulfilling lives that preserve their overall QoL.


Subject(s)
Analgesics/therapeutic use , Neoplasms/drug therapy , Pain/drug therapy , Animals , Humans , Neoplasms/complications , Neoplasms/physiopathology , Neuroglia/physiology , Pain/etiology , Pain/physiopathology , Quality of Life
15.
Eur J Pharmacol ; 641(2-3): 114-22, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20576527

ABSTRACT

TRPV1 (transient receptor potential vanilloid 1) is a ligand-gated ion channel expressed predominantly in nociceptive primary afferents that plays a key role in pain processing. In vivo activation of TRPV1 receptors by natural agonists like capsaicin is associated with a sharp and burning pain, frequently described as pungency. To elucidate the mechanisms underlying pungency we investigated a series of TRPV1 agonists that included both pungent and non-pungent compounds covering a large range of potencies. Pungency of capsaicin, piperine, arvanil, olvanil, RTX (resiniferatoxin) and SDZ-249665 was evaluated in vivo, by determining the increase in the number of eye wipes caused by direct instillation of agonist solutions into the eye. Agonist-induced calcium fluxes were recorded using the FLIPR technique in a recombinant, TRPV1-expressing cell line. Current-clamp recordings were performed in rat DRG (dorsal root ganglia) neurons in order to assess the consequences of TRPV1 activation on neuronal excitability. Using the eye wipe assay the following rank of pungency was obtained: capsaicin>piperine>RTX>arvanil>olvanil>SDZ-249665. We found a strong correlation between kinetics of calcium flux, pungency and lipophilicity of TRPV1 agonists. Current-clamp recordings confirmed that the rate of receptor activation translates in the ability of agonists to generate action potentials in sensory neurons. We have demonstrated that the lipophilicity of the compounds is directly related to the kinetics of TRPV1 activation and that the latter influences their ability to trigger action potentials in sensory neurons and, ultimately, pungency.


Subject(s)
Pain/physiopathology , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism , Action Potentials/drug effects , Alkaloids/pharmacology , Animals , Benzodioxoles/pharmacology , Capsaicin/agonists , Capsaicin/analogs & derivatives , Capsaicin/metabolism , Capsaicin/pharmacology , Diterpenes/pharmacology , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , Kinetics , Lipid Metabolism , Male , Neurons, Afferent/metabolism , Patch-Clamp Techniques , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Sensory Receptor Cells/physiology , Solubility , TRPV Cation Channels/genetics , Urea/analogs & derivatives
16.
Curr Ther Res Clin Exp ; 67(5): 283-304, 2006 Sep.
Article in English | MEDLINE | ID: mdl-24678103

ABSTRACT

BACKGROUND: Duloxetine hydrochloride, a selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitor, is relatively balanced in its affinity for both 5-HT and NE reuptake inhibition and is the first US Food and Drug Administration-approved prescription drug for the management of diabetic peripheral neuropathic pain (DPNP). OBJECTIVES: The aim of this study was to determine whether management of DPNP with duloxetine interferes with the treatment of diabetes. It also examined the tolerability of long-term exposure to duloxetine with regard to the progression of diabetic complications, and assessed the impact of DPNP management with duloxetine versus routine care. METHODS: This was a 52-week, multicenter, re-randomized, open-label extension of a parallel, double-blind, randomized, placebo-controlled, acute (12-week) study. Patients who completed the duloxetine or placebo acute treatment period were randomly reassigned in a 2:1 ratio to treatment with duloxetine 60 mg BID or routine care for an additional 52 weeks. The study included male and female outpatients aged ≥18 years with a diagnosis of DPNP caused by type 1 or type 2 diabetes. Over the course of the 52-week study, visits were scheduled on the following weeks (of the extension phase of the study): 1 (via phone only), 2, 4, 8, 12, 20, 28, 40, and 52. Tolerability was assessed by review and analyses of discontinuation rates, adverse events (AEs), laboratory data, vital signs, electrocardiographic results, concomitant medications, and diabetic complications. Treatment-emergent AEs (TEAEs) were defined as AEs that appeared during therapy (were not present at baseline) or were exacerbated during treatment. Data on AEs and concomitant medications were collected at every visit. Data on blood pressure, heart rate, and significant hypoglycemic events were collected at every visit starting from week 2. Fasting clinical chemistry and electrolyte group laboratory assessments were done at every visit, starting from week 4. Electrocardiographic data was collected at weeks 4 and 52, and glycosylated hemoglobin and lipid profile data were collected at weeks 20 and 52. Hematology and urinalysis laboratory assessments and diabetic complication assessments were done at week 52. All safety data was assessed in cases of early discontinuation. Treatment differences on quality of life (QOL) were compared using the Short Form-36 Health Status Survey (SF-36) and the EQ-5D instrument of the European Health-Related Quality of Life Measures. This was assessed at the last visit or at early discontinuation. RESULTS: The open-label extension-phase study included 337 patients (duloxetine, n = 222; routine care, n = 115). For the duloxetine group, mean age was 60.2 years, 61.3% were male, and 78.4% were white. For the routine-care group, mean age was 58.9 years, 60.0% were male, and 74.8% were white. Mean weight was 95.3 kg for both groups. None of the TEAEs occurred significantly more often in the duloxetine-treated group than in the routine-care-treated group. No TEAEs were reported by >10% of patients in the duloxetine group. The TEAEs reported by >10% of patients in the routine-care group included dizziness (11.3%), somnolence (13.0%), headache (10.4%), and vomiting (10.4%). No significant differences were found between treatment groups in the occurrence of serious AEs or in the number of patients discontinuing because of AEs. Duloxetine was significantly better than routine care on the bodily pain subscale of the SF-36 (mean change: 1.5 vs -4.1; P= 0.021) and on the EQ-5D (mean change: -0.00 vs -0.09; P = 0.001). CONCLUSIONS: Over 52 weeks of follow-up, treatment of these diabetic patients with duloxetine for peripheral neuropathic pain was associated with outcomes similar to, or significantly better than, that of routine care on most measures of tolerability, diabetic complications, and QOL.

SELECTION OF CITATIONS
SEARCH DETAIL
...