Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(8): 3381-3394, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36763803

ABSTRACT

In recent decades, transition-metal coordination compounds have been extensively studied for their antitumor and antimetastatic activities. In this work, we synthesized a set of symmetric and asymmetric Ru(III) and Rh(III) coordination compounds of the general structure (Na+/K+/PPh4+/LH+) [trans-MIIIL(eq)nL(ax)2]- (M = RuIII or RhIII; L(eq) = Cl, n = 4; L(eq) = ox, n = 2; L(ax) = 4-R-pyridine, R = CH3, H, C6H5, COOH, CF3, CN; L(ax) = DMSO-S) and systematically investigated their structure, stability, and NMR properties. 1H and 13C NMR spectra measured at various temperatures were used to break down the total NMR shifts into the orbital (temperature-independent) and hyperfine (temperature-dependent) contributions. The hyperfine NMR shifts for paramagnetic Ru(III) compounds were analyzed in detail using relativistic density functional theory (DFT). The effects of (i) the 4-R substituent of pyridine, (ii) the axial trans ligand L(ax), and (iii) the equatorial ligands L(eq) on the distribution of spin density reflected in the "through-bond" (contact) and the "through-space" (pseudocontact) contributions to the hyperfine NMR shifts of the individual atoms of the pyridine ligands are rationalized. Further, we demonstrate the large effects of the solvent on the hyperfine NMR shifts and discuss our observations in the general context of the paramagnetic NMR spectroscopy of transition-metal complexes.

2.
Int J Biol Macromol ; 194: 726-735, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34822823

ABSTRACT

Nanofibrous materials are used in drug delivery as carriers of active ingredients. These can be incorporated into the materials with various electrospinning methods that differ mainly in the way spinning solutions are prepared. Each method affects primarily the encapsulation efficiency and distribution of active ingredients in the materials. This study focuses on the incorporation of octenidine dihydrochloride (OCT) and triclosan (TRI) into nanofibrous materials electrospun from native hyaluronic acid emulsions, dispersions, and blends. OCT had no substantial effect on fiber morphology, which is affected by the solvent system. All OCT encapsulation efficiencies were comparable (approximately 90%). TRI encapsulation efficiencies varied greatly depending on the method used. Merely 3% of TRI was encapsulated when it was spun from a dispersion. Encapsulation efficiency was higher, and TRI was incorporated in clusters when an emulsion was used. The best result was achieved with a blend, in which case 96% of TRI was encapsulated.


Subject(s)
Anti-Infective Agents, Local/chemistry , Emulsions/chemistry , Hyaluronic Acid/chemistry , Nanofibers/chemistry
3.
Carbohydr Polym ; 267: 118225, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119178

ABSTRACT

Due to their large active surface, high loading efficiency, and tunable dissolution profiles, nanofibrous mats are often cited as promising drug carriers or antimicrobial membranes. Hyaluronic acid has outstanding biocompatibility, but it is hydrophilic. Nanofibrous structures made from hyaluronan dissolve immediately, making them unsuitable for controlled drug release and longer applications. We aimed to prepare a hyaluronan-based antimicrobial nanofibrous material, which would retain its integrity in aqueous environments. Self-supporting nanofibrous mats containing octenidine dihydrochloride or triclosan were produced by electrospinning from hydrophobized hyaluronan modified with a symmetric lauric acid anhydride. The nanofibrous mats required no cross-linking to be stable in PBS for 7 days. The encapsulation efficiency of antiseptics was nearly 100%. Minimal release of octenidine was observed, while up to 30% of triclosan was gradually released in 72 h. The nanofibrous materials exhibited antimicrobial activity, the fibroblast viability was directly dependent on the antiseptic content and its release.


Subject(s)
Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations/pharmacology , Drug Carriers/pharmacology , Hyaluronic Acid/pharmacology , Nanofibers/chemistry , 3T3 Cells , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/toxicity , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Liberation , Hyaluronic Acid/chemistry , Hyaluronic Acid/toxicity , Hydrophobic and Hydrophilic Interactions , Imines/chemistry , Imines/pharmacology , Imines/toxicity , Mice , Microbial Sensitivity Tests , Nanofibers/toxicity , Pseudomonas aeruginosa/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/toxicity , Staphylococcus aureus/drug effects , Triclosan/chemistry , Triclosan/pharmacology , Triclosan/toxicity
4.
Inorg Chem ; 59(14): 10185-10196, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32633504

ABSTRACT

A wide range of ruthenium-based coordination compounds have been reported to possess potential as metallodrugs with anticancer or antimetastatic activity. In this work, we synthesized a set of new zwitterionic Ru(III) compounds bearing ligands derived from N-alkyl (R) systems based on pyridine, 4,4'-bipyridine, or 1,4-diazabicyclo[2.2.2]octane (DABCO). The effects of the ligand(s) and their environment on the coordination stability have been investigated. Whereas the [DABCO-R]+ ligand is shown to be easily split out of a negative [RuCl4]- core, positively charged R-pyridine and R-bipyridine ligands form somewhat more stable Ru(III) complexes and can be used as supramolecular anchors for binding with macrocycles. Therefore, supramolecular host-guest assemblies between the stable zwitterionic Ru(III) guests and the cucurbit[7]uril host were investigated and characterized in detail by using NMR spectroscopy and single-crystal X-ray diffraction. Paramagnetic 1H NMR experiments supplemented by relativistic DFT calculations of the structure and hyperfine NMR shifts were performed to determine the host-guest binding modes in solution. In contrast to the intramolecular hyperfine shifts, dominated by the through-bond Fermi-contact mechanism, supramolecular hyperfine shifts were shown to depend on the "through-space" spin-dipole contributions with structural trends being satisfactorily reproduced by a simple point-dipole approximation.

SELECTION OF CITATIONS
SEARCH DETAIL
...