Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
2.
Nat Commun ; 14(1): 1026, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823076

ABSTRACT

Dispersion engineering is a powerful and versatile tool that can vary the speed of light signals and induce negative-mass effects in the dynamics of particles and quasiparticles. Here, we show that dissipative coupling between bound electron-hole pairs (excitons) and photons in an optical microcavity can lead to the formation of exciton polaritons with an inverted dispersion of the lower polariton branch and hence, a negative mass. We perform direct measurements of the anomalous dispersion in atomically thin (monolayer) WS2 crystals embedded in planar microcavities and demonstrate that the propagation direction of the negative-mass polaritons is opposite to their momentum. Our study introduces the concept of non-Hermitian dispersion engineering for exciton polaritons and opens a pathway for realising new phases of quantum matter in a solid state.

3.
Nat Commun ; 8: 14870, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28367950

ABSTRACT

A non-classical light source emitting pairs of identical photons represents a versatile resource of interdisciplinary importance with applications in quantum optics and quantum biology. To date, photon twins have mostly been generated using parametric downconversion sources, relying on Poissonian number distributions, or atoms, exhibiting low emission rates. Here we propose and experimentally demonstrate the efficient, triggered generation of photon twins using the energy-degenerate biexciton-exciton radiative cascade of a single semiconductor quantum dot. Deterministically integrated within a microlens, this nanostructure emits highly correlated photon pairs, degenerate in energy and polarization, at a rate of up to (234±4) kHz. Furthermore, we verify a significant degree of photon indistinguishability and directly observe twin-photon emission by employing photon-number-resolving detectors, which enables the reconstruction of the emitted photon number distribution. Our work represents an important step towards the realization of efficient sources of twin-photon states on a fully scalable technology platform.

4.
Phys Rev Lett ; 117(8): 087401, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27588881

ABSTRACT

The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.

5.
Phys Rev Lett ; 116(3): 033601, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849594

ABSTRACT

We probe the indistinguishability of photons emitted by a semiconductor quantum dot (QD) via time- and temperature-dependent two-photon interference (TPI) experiments. An increase in temporal separation between consecutive photon emission events reveals a decrease in TPI visibility on a nanosecond time scale, theoretically described by a non-Markovian noise process in agreement with fluctuating charge traps in the QD's vicinity. Phonon-induced pure dephasing results in a decrease in TPI visibility from (96±4)% at 10 K to a vanishing visibility at 40 K. In contrast to Michelson-type measurements, our experiments provide direct access to the time-dependent coherence of a quantum emitter on a nanosecond time scale.

6.
Nano Lett ; 14(9): 5371-5, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25144320

ABSTRACT

We report on the first direct experimental observation of carrier multiplication in graphene reaching a multiplication factor of up to 2 and persisting on a picoseconds time scale. Exploiting multicolor pump-probe measurement techniques, the excited nonequilibrium carrier distribution is retrieved on an ultrafast time scale. This provides access to the temporal evolution of the optically excited carrier density and thus allows quantitative conclusions on possible carrier multiplication. Microscopic time- and momentum-resolved calculations on the ultrafast relaxation dynamics of optically excited carriers confirm the observation of carrier multiplication under corresponding experimental conditions, suggesting graphene as a promising material for novel high-efficiency photodetection devices.

7.
J Phys Condens Matter ; 25(5): 054202, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23441326

ABSTRACT

We present the results of pump­probe experiments on multilayer graphene samples performed in a wide spectral range, namely from the near infrared (photon energy 1.5 eV) to the terahertz (photon energy 8 meV) spectral range. In the near infrared, exciting carriers and probing at higher photon energies provides direct evidence for a hot carrier distribution. Furthermore, spectroscopic signatures of the highly doped graphene layers at the interface to SiC are observed in the near-infrared range. In the mid-infrared range, the various relaxation mechanisms, in particular scattering via optical phonons and Auger-type processes, are identified by comparing the experimental results to microscopic modeling. Changes from induced transmission to induced absorption are attributed to probing above or below the Fermi edge of the graphene layers. This effect occurs for certain photon energies in the near-infrared range, where it is related to highly doped graphene layers at the interface to SiC, and in the far-infrared range for the quasi-intrinsic graphene layers. In addition to the relaxation dynamics, the saturation of pump-induced bleaching of graphene is studied. Here a quadratic dependence of the saturation fluence on the pump photon energy in the infrared spectral range is revealed.

8.
J Phys Condens Matter ; 24(39): 394006, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-22964905

ABSTRACT

We present a joint theory-experiment study investigating the excitonic absorption of spiropyran-functionalized carbon nanotubes. The functionalization is promising for engineering switches on a molecular level, since spiropyrans can be reversibly switched between two different conformations, inducing a distinguishable and measurable change of optical transition energies in the substrate nanotube. Here, we address the question of whether an optical read-out of such a molecular switch is possible. Combining density matrix and density functional theory, we first calculate the excitonic absorption of pristine and functionalized nanotubes. Depending on the switching state of the attached molecule, we observe a red-shift of transition energies by about 15 meV due to the coupling of excitons with the molecular dipole moment. Then we perform experiments measuring the absorption spectrum of functionalized carbon nanotubes for both conformations of the spiropyran molecule. We find good qualitative agreement between the theoretically predicted and experimentally measured red-shift, confirming the possibility for an optical read-out of the nanotube-based molecular switch.

9.
Phys Rev Lett ; 107(23): 237401, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182122

ABSTRACT

We study the carrier dynamics in epitaxially grown graphene in the range of photon energies from 10 to 250 meV. The experiments complemented by microscopic modeling reveal that the carrier relaxation is significantly slowed down as the photon energy is tuned to values below the optical-phonon frequency; however, owing to the presence of hot carriers, optical-phonon emission is still the predominant relaxation process. For photon energies about twice the value of the Fermi energy, a transition from pump-induced transmission to pump-induced absorption occurs due to the interplay of interband and intraband processes.

10.
Phys Rev Lett ; 106(9): 097401, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21405650

ABSTRACT

The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field.

11.
J Plant Physiol ; 168(12): 1497-509, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21330003

ABSTRACT

Excitation energy transfer in the light-harvesting complex II of higher plants is modeled using excitonic couplings and local transition energies determined from structure-based calculations recently (Müh et al., 2010). A theory is introduced that implicitly takes into account protein induced dynamic localization effects of the exciton wavefunction between weakly coupled optical and vibronic transitions of different pigments. Linear and non-linear optical spectra are calculated and compared with experimental data reaching qualitative agreement. High-frequency intramolecular vibrational degrees of freedom are found important for ultrafast subpicosecond excitation energy transfer between chlorophyll (Chl) b and Chla, since they allow for fast dissipation of the excess energy. The slower ps component of this transfer is due to the monomeric excited state of Chlb 605. The majority of exciton relaxation in the Chla spectral region is characterized by slow ps exciton equilibration between the Chla domains within one layer and between the lumenal and stromal layers in the 10-20ps time range. Subpicosecond exciton relaxation in the Chla region is only found within the terminal emitter domain (Chls a 610/611/612) and within the Chla 613/614 dimer. Deviations between measured and calculated exciton state life times are obtained for the intermediate spectral region between the main absorbance bands of Chla and Chlb that indicate that besides Chlb 608 another pigment should absorb there. Possible candidates, so far not identified by structure-based calculations, but by fitting of optical spectra and mutagenesis studies, are discussed. Additional mutagenesis studies are suggested to resolve this issue.


Subject(s)
Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Models, Molecular , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Chlorophyll A , Circular Dichroism , Kinetics , Protein Multimerization , Spectrometry, Fluorescence , Temperature , Vibration
12.
J Phys Chem B ; 113(29): 9948-57, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19555085

ABSTRACT

The crystal structure of the class IIb water-soluble chlorophyll binding protein (WSCP) from Lepidium virginicum is used to model linear absorption and circular dichroism spectra as well as excited state decay times of class IIa WSCP from cauliflower reconstituted with chlorophyll (Chl) a and Chl b. The close agreement between theory and experiment suggests that both types of WSCP share a common Chl binding motif, where the opening angle between pigment planes in class IIa WSCP should not differ by more than 10 degrees from that in class IIb. The experimentally observed (Schmitt et al. J. Phys. Chem. B 2008, 112, 13951) decrease in excited state lifetime of Chl a homodimers with increasing temperature is fully explained by thermally activated superradiance via the upper exciton state of the dimer. Whereas a temperature-independent intersystem crossing (ISC) rate is inferred for WSCP containing Chl a homodimers, that of WSCP with Chl b homodimers is found to increase above 100 K. Our quantum chemical/electrostatic calculations suggest that a thermally activated ISC via an excited triplet state T4 is responsible for the latter temperature dependence.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Temperature , Water/chemistry , Circular Dichroism , Crystallography, X-Ray , Lepidium/chemistry , Models, Molecular , Quantum Theory , Solubility , Static Electricity
13.
J Hazard Mater ; 163(2-3): 1403-7, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-18722058

ABSTRACT

Exothermic reactions involving organic peroxides carry a high potential hazard and must be considered with care. A safe handling requires, among others, the assessment of thermal process safety, for which safety characteristics like overall heat production and the resulting adiabatic temperature rise are essential. The article presents the results of the calorimetric investigation of the synthesis of four peroxycarboxylic esters, three tert-Butyl and one tert-Amyl peroxycarboxylic ester. In the two-step synthesis the second one clearly shows the higher exothermic potential. The overall heat production lies in the range of 126-135 kJ/mol and is nearly independent of the carboxylic acid residual in the tert-Butyl peroxycarboxylic ester. The calculated adiabatic temperature rise is 70-80K. Influence of temperature and feed rate on the heat generation is discussed for one species. A grading of the synthesis with respect to temperature levels according to the criticality classes by Stoessel leads to the most critical for an exothermic reaction.


Subject(s)
Esters/chemical synthesis , Peroxides/chemical synthesis , Calorimetry , Organic Chemistry Phenomena , Thermodynamics
14.
Phys Rev Lett ; 101(25): 256803, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-19113738

ABSTRACT

The application of quantum dot (QD) semiconductor optical amplifiers (SOAs) in above 100-Gbit Ethernet networks demands an ultrafast gain recovery on time scales similar to that of the input pulse approximately 100 GHz repetition frequency. Microscopic scattering processes have to act at shortest possible time scales and mechanisms speeding up the Coulomb scattering have to be explored, controlled, and exploited. We present a microscopic description of the gain recovery by coupled polarization- and population dynamics in a thermal nonequilibrium situation going beyond rate-equation models and discuss the limitations of Coulomb scattering between 0D and 2D-confined quantum states. An experiment is designed which demonstrates the control of gain recovery for THz pulse trains in InGaAs QD-based SOAs under powerful electrical injection.

16.
Br J Pharmacol ; 152(7): 1070-80, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17934515

ABSTRACT

BACKGROUND AND PURPOSE: Rho-kinase (ROCK) has been implicated in the pathophysiology of altered vasoregulation leading to hypertension. Here we describe the pharmacological characterization of a potent, highly selective and orally active ROCK inhibitor, the derivative of a class of azaindoles, azaindole 1 (6-chloro-N4-{3,5-difluoro-4-[(3-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)oxy]-phenyl}pyrimidine-2,4-diamine). EXPERIMENTAL APPROACH: Pharmacological characterization of azaindole 1 was performed with human recombinant ROCK in vitro. Vasodilator activity was determined using isolated vessels in vitro and different animal models in vivo. KEY RESULTS: This compound inhibited the ROCK-1 and ROCK-2 isoenzymes with IC50 s of 0.6 and 1.1 nM in an ATP-competitive manner. Although ATP-competitive, azaindole 1 was inactive against 89 kinases (IC50>10 microM) and showed only weak activity against an additional 21 different kinases (IC50=1-10 microM). Only the kinases TRK und FLT3 were inhibited by azaindole 1 in the sub-micromolar range, albeit with IC50 values of 252 and 303 nM, respectively. In vivo, azaindole 1 lowered blood pressure dose-dependently after i.v. administration in anaesthetized normotensive rats. In conscious normotensive and spontaneously hypertensive rats azaindole 1 induced a dose-dependent decrease in blood pressure after oral administration without inducing a significant reflex increase in heart rate. In anaesthetized dogs, azaindole 1 induced vasodilatation with a moderately elevated heart rate. CONCLUSIONS AND IMPLICATIONS: Azaindole 1 is representative of a new class of selective and potent ROCK inhibitors and is a valuable tool for the elucidation of the role of ROCK in the cardiovascular system.


Subject(s)
Cardiovascular System/drug effects , Diamines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Administration, Oral , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Binding Sites/drug effects , Blood Pressure/drug effects , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cells, Cultured , Computer Simulation , Death-Associated Protein Kinases , Dogs , Dose-Response Relationship, Drug , Female , Humans , Injections, Intravenous , Male , Mice , Models, Animal , Models, Molecular , Organ Culture Techniques , Phosphorylation , Polymerase Chain Reaction/methods , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rabbits , Rats , Rats, Inbred SHR , Rats, Wistar , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Time Factors , Vasodilator Agents/administration & dosage , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
17.
J Chem Phys ; 127(7): 075105, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17718636

ABSTRACT

Recent progress in resolution of the structure of the light harvesting complex II provides the basis for theoretical predictions on nonlinear optical properties from microscopic calculations. An approach to absorption and fluorescence is presented within the framework of Bloch equations using a correlation expansion of relevant many particle interactions. The equations derived within the framework of this theory are applied to describe fluorescence saturation phenomena. The experimentally observed decrease of the normalized fluorescence quantum yield from 1 to 0.0001 upon increasing the intensity of laser pulse excitation at 645 nm by five orders of magnitude [R Schödel et al., Biophys. J. 71, 3370 (1996)] is explained by Pauli blocking effects of optical excitation and excitation energy transfer.


Subject(s)
Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/radiation effects , Chlorophyll/chemistry , Chlorophyll/radiation effects , Chlorophyll A , Light , Light-Harvesting Protein Complexes , Quantum Theory , Spectrometry, Fluorescence
18.
J Phys Chem B ; 111(35): 10487-501, 2007 Sep 06.
Article in English | MEDLINE | ID: mdl-17696386

ABSTRACT

Time-local and time-nonlocal theories are used in combination with optical spectroscopy to characterize the water-soluble chlorophyll binding protein complex (WSCP) from cauliflower. The recombinant cauliflower WSCP complexes reconstituted with either chlorophyll b (Chl b) or Chl a/Chl b mixtures are characterized by absorption spectroscopy at 77 and 298 K and circular dichroism at 298 K. On the basis of the analysis of these spectra and spectra reported for recombinant WSCP reconstituted with Chl a only (Hughes, J. L.; Razeghifard, R.; Logue, M.; Oakley, A.; Wydrzynski, T.; Krausz, E. J. Am. Chem. Soc. U.S.A. 2006, 128, 3649), the "open-sandwich" model proposed for the structure of the pigment dimer is refined. Our calculations show that, for a reasonable description of the data, a reduction of the angle between pigment planes from 60 degrees of the original model to about 30 degrees is required when exciton relaxation-induced lifetime broadening is included in the analysis of optical spectra. The temperature dependence of the absorption spectrum is found to provide a unique test for the two non-Markovian theories of optical spectra. Based on our data and the 1.7 K spectra of Hughes et al. (2006), the time-local partial ordering prescription theory is shown to describe the experimental results over the whole temperature range between 1.7 K and room temperature, whereas the alternative time-nonlocal chronological ordering prescription theory fails at high temperatures. Modified-Redfield theory predicts sub-100 fs exciton relaxation times for the homodimers and a 450 fs time constant in the heterodimers. Whereas the simpler Redfield theory gives a similar time constant for the homodimers, the one for the heterodimers deviates strongly in the two theories. The difference is explained by multivibrational quanta transitions in the protein which are neglected in Redfield theory.


Subject(s)
Chlorophyll/chemistry , Light-Harvesting Protein Complexes/chemistry , Models, Chemical , Brassica , Chlorophyll A , Circular Dichroism , Kinetics , Models, Molecular , Optics and Photonics , Spectrum Analysis , Static Electricity
19.
Phys Rev Lett ; 98(2): 027401, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17358646

ABSTRACT

Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.

20.
Phys Rev Lett ; 94(11): 115004, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15903868

ABSTRACT

Luminescence as a mechanism for terahertz emission from femtosecond laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb scattering between electrons and ions is shown to lead to luminescence even for a spatially homogeneous plasma. The spectral features introduced by the rod geometry of laser-induced plasma channels in air are discussed on the basis of a generalized mode-function analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...