Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Phys B ; 129(5): 78, 2023.
Article in English | MEDLINE | ID: mdl-37152905

ABSTRACT

The huge field of optics and photonics research and development is in constant demand of well-trained experts. However, it is challenging to teach efficiently the setup process of complicated optical experiments due to limited hardware availability and eye-safety concerns, in particular, in the case of femtosecond lasers. We have developed an interactive simulation of an ultrafast laser laboratory ("femtoPro") for teaching and training, implementing physical models for the calculation and visualization of Gaussian laser beam propagation, ultrashort optical pulses, their modulation by typical optical elements, and linear as well as nonlinear light-matter interaction. This facilitates the setup and simulated measurement procedure, in virtual reality (VR) and at real-time speeds, of various typical optical arrangements and spectroscopy schemes such as telescopes, interferometers, or pulse characterization. femtoPro can be employed to supplement academic teaching in connection with regular courses in optics or spectroscopy, to train future scientists and engineers in the field of (ultrafast) optics in practical skills, to communicate to other researchers how to set up and align a particular experiment, to "test-build" and simulate new designs of optical setups, to simulate ultrafast spectroscopy data, to offer practical exercises to high-school students, and to reach out to the general public.

2.
Front Bioinform ; 1: 774300, 2021.
Article in English | MEDLINE | ID: mdl-36303783

ABSTRACT

In interdisciplinary fields such as systems biology, good communication between experimentalists and theorists is crucial for the success of a project. Theoretical modeling in physiology usually describes complex systems with many interdependencies. On one hand, these models have to be grounded on experimental data. On the other hand, experimenters must be able to understand the interdependent complexities of the theoretical model in order to interpret the model's results in the physiological context. We promote interactive, visual simulations as an engaging way to present theoretical models in physiology and to make complex processes tangible. Based on a requirements analysis, we developed a new model for gas exchange in the human alveolus in combination with an interactive simulation software named Alvin. Alvin exceeds the current standard with its spatio-temporal resolution and a combination of visual and quantitative feedback. In Alvin, the course of the simulation can be traced in a three-dimensional rendering of an alveolus and dynamic plots. The user can interact by configuring essential model parameters. Alvin allows to run and compare multiple simulation instances simultaneously. We exemplified the use of Alvin for research by identifying unknown dependencies in published experimental data. Employing a detailed questionnaire, we showed the benefits of Alvin for education. We postulate that interactive, visual simulation of theoretical models, as we have implemented with Alvin on respiratory processes in the alveolus, can be of great help for communication between specialists and thereby advancing research.

SELECTION OF CITATIONS
SEARCH DETAIL
...