Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 32(4): e4614, 2023 04.
Article in English | MEDLINE | ID: mdl-36870000

ABSTRACT

The introduction of an engineered aminoacyl-tRNA synthetase/tRNA pair enables site-specific incorporation of unnatural amino acids (uAAs) with functionalized side chains into proteins of interest. Genetic Code Expansion (GCE) via amber codon suppression confers functionalities to proteins but can also be used to temporally control the incorporation of genetically encoded elements into proteins. Here, we report an optimized GCE system (GCEXpress) for efficient and fast uAA incorporation. We demonstrate that GCEXpress can be used to efficiently alter the subcellular localization of proteins within living cells. We show that click labeling can resolve co-labeling problems of intercellular adhesive protein complexes. We apply this strategy to study the adhesion G protein-coupled receptor (aGPCR) ADGRE5/CD97 and its ligand CD55/DAF that play central roles in immune functions and oncological processes. Furthermore, we use GCEXpress to analyze the time course of ADGRE5-CD55 ligation and replenishment of mature receptor-ligand complexes. Supported by fluorescence recovery after photobleaching (FRAP) experiments our results show that ADGRE5 and CD55 form stable intercellular contacts that may support transmission of mechanical forces onto ADGRE5 in a ligand-dependent manner. We conclude that GCE in combination with biophysical measurements can be a useful approach to analyze the adhesive, mechanical and signaling properties of aGPCRs and their ligand interactions.


Subject(s)
Amino Acyl-tRNA Synthetases , Genetic Code , Ligands , Amino Acids/chemistry , Cloning, Molecular , Amino Acyl-tRNA Synthetases/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism
2.
J Vis Exp ; (178)2021 12 11.
Article in English | MEDLINE | ID: mdl-34958081

ABSTRACT

We present a protocol and workflow to perform live cell dual-color fluorescence cross-correlation spectroscopy (FCCS) combined with Förster Resonance Energy transfer (FRET) to study membrane receptor dynamics in live cells using modern fluorescence labeling techniques. In dual-color FCCS, where the fluctuations in fluorescence intensity represent the dynamic "fingerprint" of the respective fluorescent biomolecule, we can probe co-diffusion or binding of the receptors. FRET, with its high sensitivity to molecular distances, serves as a well-known "nanoruler" to monitor intramolecular changes. Taken together, conformational changes and key parameters such as local receptor concentrations and mobility constants become accessible in cellular settings. Quantitative fluorescence approaches are challenging in cells due to high noise levels and the vulnerability of the sample. Here we show how to perform this experiment, including the calibration steps using dual-color labeled ß2-adrenergic receptor (ß2AR) labeled with eGFP and SNAP-tag-TAMRA. A step-by-step data analysis procedure is provided using open-source software and templates that are easy to customize. Our guideline enables researchers to unravel molecular interactions of biomolecules in live cells in situ with high reliability despite the limited signal-to-noise levels in live cell experiments. The operational window of FRET and particularly FCCS at low concentrations allows quantitative analysis at near-physiological conditions.


Subject(s)
Fluorescence Resonance Energy Transfer , Diffusion , Reproducibility of Results , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...