Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 135: 127-131, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30529978

ABSTRACT

The compositions of the seed oils obtained by hexane extraction of three members of the Ficus genus of the Moraceae plant family was determined, namely Ficus nota, Ficus septica, Ficus ulmifolia. Linolenic acid is the most prominent fatty acid in the seed oils followed by linoleic acid, with these two fatty acid comprising about 75% of the fatty acids in the oils. The high level of polyunsaturated fatty acids coincides with high levels of these acids predominating among the fatty acids observed in various plant parts of other Ficus species. Besides the fatty acids, a variety of phytochemicals also found in other plant parts of Ficus species were observed in the seed oils, including squalene, pentacyclic triterpenes such as α-amyrin, ß-amyrin and lupeol, as well as sterols such as cholesterol and γ-sitosterol, the former at unusually elevated levels. The levels of these phytochemicals vary from species to species and location of harvest, with F. ulmifolia showing by far the highest level of these materials and with α-amyrin, ß-amyrin and lupeol being the most common, their amounts exceeding those of fatty acids for samples from one specific location. Surprisingly, low levels of macrocyclic alkanes in the range of C24-C30 were identified.


Subject(s)
Cycloparaffins/analysis , Fatty Acids/analysis , Ficus/metabolism , Plant Oils/chemistry , Seeds/chemistry , Triterpenes/analysis , Ficus/chemistry , Linoleic Acid/analysis , alpha-Linolenic Acid/analysis
2.
ACS Omega ; 2(10): 6473-6480, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457248

ABSTRACT

Recently, the decarboxylation of oleic acid (9(Z)-octadecenoic acid) catalyzed by triruthenium dodecacarbonyl, Ru3(CO)12, to give a mixture of heptadecenes with concomitant formation of other hydrocarbons, heptadecane and C17 alkylbenzenes, was reported. The product mixture, consisting of about 77% heptadecene isomers, 18% heptadecane, and slightly >4% C17 alkylbenzenes, possesses acceptable diesel fuel properties. This reaction is now applied to other fatty acids of varying chain length and degree of saturation as well as double-bond configuration and position. Acids beyond oleic acid included in the present study are lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), petroselinic (6(Z)-octadecenoic), elaidic (9(E)-octadecenoic), asclepic (11(Z)-octadecenoic), and linoleic (9(Z),12(Z)-octadecadienoic) acids. Regardless of the chain length and degree of unsaturation, a similar product mixture was obtained in all cases with a mixture of alkenes predominating. Monounsaturated fatty acids, however, afforded the alkane with one carbon less than the parent fatty acid as the most prominent component in the mixture. Alkylbenzenes with one carbon atom less than the parent fatty acid were also present in all product mixtures. The number of isomeric alkenes and alkylbenzenes depends on the number of carbons in the chain of the parent fatty acid. With linoleic acid as the starting material, the amount of alkane was reduced significantly with alkenes and alkylaromatics enhanced compared to the monounsaturated fatty acids. Two alkenes, 9(E)-tetradecene and 1-hexadecene, were also studied as starting materials. A similar product mixture was observed but with comparatively minor amount of alkane formed and alkene isomers dominating at almost 90%. The double-bond position and configuration in the starting material do not influence the pattern of alkene isomers in the product mixture. The results underscore the multifunctionality of the Ru3(CO)12 catalyst, which promotes a reaction sequence including decarboxylation, isomerization, desaturation, hydrogenation, and cyclization (aromatization) to give a mixture of hydrocarbons simulating petrodiesel fuels. A reaction pathway is proposed to explain the existence of these products, in which alkenes are dehydrogenated to alkadienes and then, under cyclization, to the observed alkylaromatics. The liberated hydrogen can then saturate alkenes to the corresponding alkane.

3.
J Vis Exp ; (112)2016 06 24.
Article in English | MEDLINE | ID: mdl-27404113

ABSTRACT

The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.


Subject(s)
Biofuels , Biomass , Esterification , Haptophyta , Microalgae
4.
Respirology ; 20(7): 1034-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26179557

ABSTRACT

Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure.


Subject(s)
Biofuels/adverse effects , Particulate Matter , Vehicle Emissions , Air Pollutants/adverse effects , Air Pollutants/analysis , Animals , Environmental Monitoring/methods , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Public Health , Vehicle Emissions/analysis , Vehicle Emissions/prevention & control
5.
Bioresour Technol ; 100(23): 5796-801, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19592239

ABSTRACT

Used cooking or frying oils are of increasing interest as inexpensive feedstock for biodiesel production. In this work, used frying oils obtained from 16 local restaurants were investigated regarding their fatty acid profile vs. the fatty acid profile of the oil or fat prior to use. The fatty acid profiles were analyzed by gas chromatography and proton nuclear magnetic resonance spectroscopy. Besides the fatty acid profile, the acid value and dynamic viscosity of the samples were determined. Dynamic viscosity was determined because of non-Newtonian behavior of some samples. The results indicate that oils and fats experience various degrees of increase in saturation during cooking/frying use, with the magnitude of these changes varying from sample to sample, i.e., a high degree of randomness of composition is found in used frying oil samples. Properties of the samples that were investigated were acid value and viscosity which consistently increased with use, also in a random fashion. Multiple independent samples obtained from the same restaurants indicate that there is little consistency of used cooking oil obtained from the same source. These results are discussed with regards to the potential fuel properties of biodiesel derived from these used frying oils.


Subject(s)
Bioelectric Energy Sources , Oils/chemistry , Plant Oils/chemistry , Animals , Chromatography, Gas/methods , Fats/chemistry , Fatty Acids/analysis , Hydrogen/chemistry , Industrial Waste , Magnetic Resonance Spectroscopy , Oxygen/chemistry , Restaurants , Viscosity
6.
Curr Microbiol ; 57(5): 437-41, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18704576

ABSTRACT

Eighteen Pseudomonas aeruginosa strains were examined for their ability to convert oleic acid to produce 10-hydroxy-8(E)-octadecenoic acid (HOD), which was structurally confirmed by GC-MS, NMR, and FTIR. There were no substantial amounts of other new compounds found in the fermentation broths in addition to HOD and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). The results demonstrated that P. aeruginosa strains possessed varying levels of activity for producing HOD. Under the experimental conditions, strain NRRL B-14938 isolated from sheep manure was the best HOD producer exhibiting the highest HOD to DOD product ratio in the medium most suitable for purifying HOD. Using strain B-14938 as a model system for further characterization, optimum conditions for producing HOD were found to be at 26 degrees C and pH 7.0 after 60 h of reaction time using a medium containing EDTA as a chelating agent. This study has identified a high-yielding P. aeruginosa strain and provided the reaction characteristics needed to develop a scale-up production process of HOD for testing its properties and potential new uses.


Subject(s)
Industrial Microbiology , Manure/microbiology , Oleic Acid/metabolism , Oleic Acids/metabolism , Pseudomonas aeruginosa/metabolism , Animals , Biotransformation , Fermentation , Pseudomonas aeruginosa/isolation & purification , Sheep
7.
Bioresour Technol ; 99(17): 8175-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18474424

ABSTRACT

Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The 1H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel.


Subject(s)
Bioelectric Energy Sources , Moringa oleifera/chemistry , Plant Oils/chemistry , Cold Temperature , Esters/analysis , Fatty Acids/analysis , Lubrication , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Reference Standards , Viscosity
8.
Bioresour Technol ; 99(7): 2706-9, 2008 May.
Article in English | MEDLINE | ID: mdl-17582762

ABSTRACT

Novel multi-hydroxylated primary fatty amides produced by direct amidation of 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid were characterized by GC-MS and NMR. The amidation reactions were catalyzed by immobilized Pseudozyma (Candida) antarctica lipase B (Novozym 435) in organic solvent with ammonium carbamate. The mass spectra of the underivatized products exhibited characteristic primary amide peaks at m/z 59 and m/z 72 that differed in peak intensities. Other peaks present were consistent with cleavage next to the hydroxyl groups. The mass spectra of the silylated amidation products showed the correct molecular weight and the typical fragmentation pattern of silylated hydroxy compounds. The mass spectra, together with proton and 13C NMR data, suggest that the products of lipase-catalyzed direct amidation of 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid are, 7,10-dihydroxy-8(E)-octadecenamide and 7,10,12-trihydroxy-8(E)-octadecenamide acid, respectively. Amidation of multi-hydroxylated fatty acids had increased the melting point, but reduced the surface active property of the resulting primary amides.


Subject(s)
Amides/metabolism , Fatty Acids/metabolism , Lipase/metabolism , Catalysis , Hydroxylation , Spectrometry, Mass, Electrospray Ionization
9.
Lipids ; 41(4): 393-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16808153

ABSTRACT

Cyclopropane FA occur in nature in the phosphoplipids of bacterial membranes, in oils containing cyclopropene FA, and in Litchi sinensis oil. Dihydrosterculic acid (2-octyl cyclopropaneoctanoic acid) and its methyl ester were selected for 1H and 13C NMR analysis as compounds representative of cyclopropane FA. The 500 MHz 1H NMR spectra acquired with CDCl3 as solvent show two individual peaks at -0.30 and 0.60 ppm for the methylene protons of the cyclopropane ring. Assignments were made with the aid of 2D correlations. In accordance with previous literature, the upfield signal is assigned to the cis proton and the downfield signal to the trans proton. This signal of the trans proton is resolved from the peak of the two methine protons of the cyclopropane ring, which is located at 0.68 ppm. The four protons attached to the two methylene carbons alpha to the cyclopropane ring also show a split signal. Two of these protons, one from each methylene moiety, display a distinct shift at 1.17 ppm, and the signal of the other two protons is observed at 1.40 ppm, within the broad methylene peak. The characteristic peaks in the 13C spectra are also assigned.


Subject(s)
Esters/chemistry , Fatty Acids/chemistry , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes
10.
Chem Phys Lipids ; 115(1-2): 85-91, 2002 May.
Article in English | MEDLINE | ID: mdl-12047900

ABSTRACT

A series of long-chain methyl esters with vicinal oxo groups (1,2-diones; 1,2-diketones) were synthesized by potassium permanganate-based oxidation of methyl esters of mono-unsaturated fatty acids. The presence of two additional carbonyl groups may facilitate the synthesis of other derivatives. The starting materials were selected in such a fashion to give the 1,2-dioxo moiety in consecutive positions from the methyl ester group. The compounds were characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. In mass spectrometry, both electron and chemical ionization (methane as reagent gas) were investigated. The position of the dioxo moiety can be determined in both ionization modes, however, in electron ionization mode the corresponding fragment ions are considerably stronger. In electron ionization mode, a fragmentation mechanism depending on the position of the 1,2-dioxo moiety occurs while the spectra derived from chemical ionization mode are mainly characterized by peaks around the molecular ion with both ionization modes appearing suitable.


Subject(s)
Oxygen/chemistry , Esters , Magnetic Resonance Spectroscopy , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...