Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36752207

ABSTRACT

Gastroesophageal adenocarcinomas (GEAs) harbor recurrent amplification of KRAS, leading to marked overexpression of WT KRAS protein. We previously demonstrated that SHP2 phosphatase, which acts to promote KRAS and downstream MAPK pathway activation, is a target in these tumors when combined with MEK inhibition. We hypothesized that SHP2 inhibitors may serve as a foundation for developing novel combination inhibitor strategies for therapy of KRAS-amplified GEA, including with targets outside the MAPK pathway. Here, we explore potential targets to effectively augment the efficacy of SHP2 inhibition, starting with genome-wide CRISPR screens in KRAS-amplified GEA cell lines with and without SHP2 inhibition. We identify candidate targets within the MAPK pathway and among upstream RTKs that may enhance SHP2 efficacy in KRAS-amplified GEA. Additional in vitro and in vivo experiments demonstrated the potent cytotoxicity of pan-ERBB kinase inhibitions in vitro and in vivo. Furthermore, beyond targets within the MAPK pathway, we demonstrate that inhibition of CDK4/6 combines potently with SHP2 inhibition in KRAS-amplified GEA, with greater efficacy of this combination in KRAS-amplified, compared with KRAS-mutant, tumors. These results suggest therapeutic combinations for clinical study in KRAS-amplified GEAs.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Mutation , Cell Line, Tumor
2.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35801592

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with 2 etiologies. Merkel cell polyomavirus (MCPyV) integration is present in about 80% of all MCC. Virus-positive MCC (MCCP) tumors have few somatic mutations and usually express WT p53 (TP53). By contrast, virus-negative MCC (MCCN) tumors present with a high tumor mutational burden and predominantly UV mutational signature. MCCN tumors typically contain mutated TP53. MCCP tumors express 2 viral proteins: MCPyV small T antigen and a truncated form of large T antigen. MCPyV ST specifically activates expression of MDM2, an E3 ubiquitin ligase of p53, to inhibit p53-mediated tumor suppression. In this study, we assessed the efficacy of milademetan, a potent, selective, and orally available MDM2 inhibitor in several MCC models. Milademetan reduced cell viability of WT p53 MCC cell lines and triggered a rapid and sustained p53 response. Milademetan showed a dose-dependent inhibition of tumor growth in MKL-1 xenograft and patient-derived xenograft models. Here, along with preclinical data for the efficacy of milademetan in WT p53 MCC tumors, we report several in vitro and in vivo models useful for future MCC studies.


Subject(s)
Carcinoma, Merkel Cell , Polyomavirus Infections , Proto-Oncogene Proteins c-mdm2 , Skin Neoplasms , Tumor Virus Infections , Animals , Antigens, Viral, Tumor/metabolism , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/genetics , Humans , Indoles/pharmacology , Merkel cell polyomavirus , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Pyridines/pharmacology , Pyrrolidines/pharmacology , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Tumor Suppressor Protein p53/genetics
3.
Br J Cancer ; 125(4): 582-592, 2021 08.
Article in English | MEDLINE | ID: mdl-34088988

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a dismal prognosis. There is increasing interest in targeting chromatin regulatory pathways in difficult-to-treat cancers. In preliminary studies, we found that KDM4A (lysine-specific histone demethylase 4) was overexpressed in MPM. METHODS: KDM4A protein expression was determined by immunohistochemistry or immunoblotting. Functional inhibition of KDM4A by targeted knockdown and small molecule drugs was correlated to cell growth using cell lines and a xenograft mouse model. Gene expression profiling was performed to identify KDM4A-dependent signature pathways. RESULTS: Levels of KDM4A were found to be significantly elevated in MPM patients compared to normal mesothelial tissue. Inhibiting the enzyme activity efficiently reduced cell growth in vitro and reduced tumour growth in vivo. KDM4A inhibitor-induced apoptosis was further enhanced by the BH3 mimetic navitoclax. KDM4A expression was associated with pathways involved in cell growth and DNA repair. Interestingly, inhibitors of the DNA damage and replication checkpoint regulators CHK1 (prexasertib) and WEE1 (adavosertib) within the DNA double-strand break repair pathway, cooperated in the inhibition of cell growth. CONCLUSIONS: The results establish a novel and essential role for KDM4A in growth in preclinical models of MPM and identify potential therapeutic approaches to target KDM4A-dependent vulnerabilities.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mesothelioma, Malignant/pathology , Up-Regulation , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/metabolism , Mice , Pyrazines/administration & dosage , Pyrazines/pharmacology , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 20(4): 641-654, 2021 04.
Article in English | MEDLINE | ID: mdl-33536188

ABSTRACT

RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing antitumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS-mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here, we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS-mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and-equally important-to identify biomarkers for patient stratification.


Subject(s)
Genes, ras/drug effects , Lung Neoplasms/drug therapy , Oncogenes/genetics , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology
5.
Clin Cancer Res ; 27(1): 276-287, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33239433

ABSTRACT

PURPOSE: Dexamethasone, a uniquely potent corticosteroid, is frequently administered to patients with brain tumors to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in patients with glioblastoma (GBM), particularly in the context of immunotherapy. EXPERIMENTAL DESIGN: We evaluated the dose-dependent effects of dexamethasone when administered with programmed cell death 1 (PD-1) blockade and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 and CT-2A GBM tumors. Clinically, the effect of dexamethasone on survival was evaluated in 181 patients with isocitrate dehydrogenase (IDH) wild-type GBM treated with PD-(L)1 blockade, with adjustment for relevant prognostic factors. RESULTS: Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy reduced survival in a dose-dependent manner. Concurrent dexamethasone also abrogated survival following anti-PD-1 therapy with or without radiotherapy in immune-resistant CT-2A models. Dexamethasone decreased T-lymphocyte numbers by increasing apoptosis, in addition to decreasing lymphocyte functional capacity. Myeloid and natural killer cell populations were also generally reduced by dexamethasone. Thus, dexamethasone appears to negatively affect both adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive patients with IDH wild-type GBM treated with PD-(L)1 blockade revealed poorer survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone administration was the strongest predictor of poor survival [reference, no dexamethasone; <2 mg HR, 2.16; 95% confidence interval (CI), 1.30-3.68; P = 0.003 and ≥2 mg HR, 1.97; 95% CI, 1.23-3.16; P = 0.005]. CONCLUSIONS: Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for patients with GBM.


Subject(s)
Brain Edema/drug therapy , Brain Neoplasms/therapy , Dexamethasone/pharmacology , Glioblastoma/therapy , Immune Checkpoint Inhibitors/pharmacology , Animals , B7-H1 Antigen/antagonists & inhibitors , Brain Edema/etiology , Brain Neoplasms/complications , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Cell Line, Tumor/transplantation , Chemoradiotherapy/methods , Dexamethasone/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Interactions , Female , Follow-Up Studies , Glioblastoma/complications , Glioblastoma/genetics , Glioblastoma/mortality , Humans , Immune Checkpoint Inhibitors/therapeutic use , Isocitrate Dehydrogenase/genetics , Kaplan-Meier Estimate , Mice , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Retrospective Studies , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...