Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 68(1): e0105023, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38063402

ABSTRACT

Endocytosis, or internalization through endosomes, is a major cell entry mechanism used by respiratory viruses. Phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of phosphatidylinositol (3, 5)biphosphate (PtdIns (3, 5)P2) and has been implicated in virus trafficking via the endocytic pathway. In fact, antiviral effects of PIKfyve inhibitors against SARS-CoV-2 and Ebola have been reported, but there is little evidence regarding other respiratory viruses. In this study, we demonstrated the antiviral effects of PIKfyve inhibitors on influenza virus and respiratory syncytial virus in vitro and in vivo. PIKfyve inhibitors Apilimod mesylate (AM) and YM201636 concentration-dependently inhibited several influenza strains in an MDCK cell-cytopathic assay. AM also reduced the viral load and cytokine release, while improving the cell integrity of human nasal air-liquid interface cultured epithelium infected with influenza PR8. In PR8-infected mice, AM (2 mg/mL), when intranasally treated, exhibited a significant reduction of viral load and inflammation and inhibited weight loss caused by influenza infection, with effects being similar to oral oseltamivir (10 mg/kg). In addition, AM demonstrated antiviral effects in RSV A2-infected human nasal epithelium in vitro and mouse in vivo, with an equivalent effect to that of ribavirin. AM also showed antiviral effects against human rhinovirus and seasonal coronavirus in vitro. Thus, PIKfyve is found to be involved in influenza and RSV infection, and PIKfyve inhibitor is a promising molecule for a pan-viral approach against respiratory viruses.


Subject(s)
Hemorrhagic Fever, Ebola , Influenza, Human , Humans , Animals , Mice , Oseltamivir , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Nasal Mucosa
2.
Eur J Pharm Sci ; 163: 105878, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34015430

ABSTRACT

PC945 is a novel antifungal agent, optimised for inhaled treatment. In this study, the relationship between antifungal effects of PC945 and its exposure in the lungs was investigated in Aspergillus fumigatus intranasally infected, temporarily neutropenic mice. Mice were given prophylactic PC945 intranasally once daily (0.56 µg/mouse) on either Day -7 to 0 (8 doses) or Day -1 to 0 (2 doses). Lung tissue, plasma and bronchoalveolar lavage (BAL) fluid were collected 24 or 72 h post A. fumigatus inoculation for biomarker and pharmacokinetic analyses. BAL cell pellets and supernatants were prepared separately by centrifugation. 8 prophylactic doses of PC945 were found to demonstrate significantly stronger antifungal effects (lung fungal burden and galactomannan (GM) in BAL and plasma) than prophylaxis with 2 doses. PC945 concentrations were below the limit of detection in plasma but readily measured in lung extracts. The concentrations were much higher after extended prophylaxis (709 and 312 ng/g of lung) than short prophylaxis (301 and 195 ng/g of lung) at 24 and 72 h post last dose, respectively, suggesting PC945 accumulation in whole lung after repeat dosing although it was likely to be a mixture of dissolved and undissolved PC945, meaning that the data should be interpreted with caution. Interestingly, low concentrations of PC945 were detected in BAL supernatant (6.6 and 1.9 ng/ml) whereas high levels of PC945 were measured in BAL cell pellets (626 and 406 ng/ml) at 24 and 72 h post last dose, respectively, in extended prophylaxis. In addition, the PC945 concentrations in BAL cells showed a statistically significant correlation with measured anti-fungal activities. These observations will be pursued, and it is intended that BAL cell concentrations of PC945 be measured in future clinical studies rather than standard measurement in BAL itself. Thus, PC945's profile makes it an attractive potential prophylactic agent for the prevention of pulmonary fungal infections.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Animals , Antifungal Agents/pharmacology , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Lung , Mannans , Mice
3.
Br J Pharmacol ; 175(12): 2520-2534, 2018 06.
Article in English | MEDLINE | ID: mdl-29579332

ABSTRACT

BACKGROUND AND PURPOSE: Effective anti-respiratory syncytial virus (RSV) agents are still not available for clinical use. Current major targets are virus surface proteins, such as a fusion protein involved in viral entry, but agents effective after RSV infection is established are required. Here we have investigated the effects of late therapeutic intervention with a novel inhaled RSV polymerase inhibitor, PC786, on RSV infection in human airway epithelium. EXPERIMENTAL APPROACH: Air liquid interface-cultured bronchial or small airway epithelium was infected with RSVA2. PC786 was applied apically or basolaterally once daily following peak virus load on Day 3 post inoculation. Apical wash was collected daily for determination of viral burden by PCR and plaque assay (primary endpoints) and biomarker analyses. The effects were compared with those of ALS-8112, an anti-RSV nucleoside analogue, and GS-5806, a fusion-protein inhibitor, which were treated basolaterally. KEY RESULTS: Late intervention with GS-5806 did not show significant anti-viral effects, but PC786 produced potent, concentration-dependent inhibition of viral replication with viral load falling below detectable limits 3 days after treatment commenced in airway epithelium. These effects were superior to those of ALS-8112. PC786 showed inhibitory activities against RSV-induced increases of CCL5, IL-6, double-strand DNA and mucin. The effects of PC786 were also confirmed in small airway epithelium. CONCLUSION AND IMPLICATIONS: Late therapeutic intervention with the RSV polymerase inhibitor, PC786, reduced the viral burden quickly in human airway epithelium. Thus, PC786 demonstrates the potential to be an effective therapeutic agent to treat active RSV infection.


Subject(s)
Antiviral Agents/pharmacology , Epithelium/drug effects , Respiratory Mucosa/drug effects , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Spiro Compounds/pharmacology , Antiviral Agents/chemistry , Benzamides , Benzazepines , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Dose-Response Relationship, Drug , Epithelium/metabolism , Epithelium/virology , HeLa Cells , Humans , Microbial Sensitivity Tests , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/metabolism , Spiro Compounds/chemistry , Structure-Activity Relationship , Virus Replication/drug effects
4.
J Med Chem ; 59(5): 1727-46, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26800309

ABSTRACT

The discovery of a novel series of therapeutic agents that has been designed and optimized for treating chronic obstructive pulmonary disease is reported. The pharmacological strategy was based on the identification of compounds that inhibit a defined subset of kinase enzymes modulating inflammatory processes that would be effective against steroid refractory disease and exhibit a sustained duration of action after inhaled delivery.


Subject(s)
Asthma/drug therapy , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Asthma/metabolism , Dose-Response Relationship, Drug , Drug Resistance/drug effects , Humans , Male , Mice , Mice, Inbred Strains , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pulmonary Disease, Chronic Obstructive/metabolism , Steroids/pharmacology , Structure-Activity Relationship , U937 Cells
5.
Br J Pharmacol ; 142(3): 519-30, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15148261

ABSTRACT

1 The effects of purinoceptor ligands for P2X1 and/or P2X3 receptors (alpha,beta-meATP, IP(5)I, TNP-ATP, MRS 2179, PPADS, Phenol red and RO116-6446/008; i.v., n=4-5) and for P2Y1 receptors (PPADS, MRS 2179 and MRS 2269; i.v., n=3-5) were investigated on the distension-evoked 'micturition reflex' in the urethane-anaesthetized female rat. 2 Alpha,beta-meATP (180 nmol kg(-1) min(-1)), IP5I (10, 30 and 100 nmol kg(-1)), TNP-ATP (1 micromol kg(-1)), MRS 2179 (1 micromol kg(-1)) and PPADS (17 micromol kg(-1)) each caused maintained bladder contractions to occur during the infusion of saline into the bladder. PPADS (17 micromol kg(-1) min(-1)) had a similar effect when infused intravesicularly. Regular bladder contractions were not observed until the infusion of saline was halted. For IP5I, TNP-ATP, MRS 2179 and PPADS, the magnitude of postinfusion isovolumetric contractions was significantly reduced and, for IP5I, this action was also associated with a significant reduction in urethral relaxation. Additionally, TNP-ATP caused a significant increase in the pressure and volume thresholds required to initiate a reflex. 3 Phenol red (a P2X1/P2X3 antagonist; 0.1 and 1 micromol kg(-1)) caused a significant increase in the pressure and volume thresholds required to initiate a reflex and, at the higher dose, also caused a reduction in postinfusion isovolumetric contractions. 4 RO116-6446/008 (a P2X1-selective antagonist; 1 and 10 micromol kg(-1)) only caused a reduction in postinfusion isovolumetric contractions. 5 It is concluded that P2X1 and P2X3 receptors play a fundamental role in the micturition reflex in urethane-anesthetized female rats. P2X3 receptor blockade raised the pressure and volume thresholds for the reflex, whereas P2X1 receptor blockade diminished motor activity associated with voiding. P2Y1 receptors may be involved in inhibition of rat detrusor tone.


Subject(s)
Purinergic P2 Receptor Antagonists , Urethra/drug effects , Urinary Bladder/drug effects , Urination/drug effects , Anesthesia/methods , Anesthetics, Intravenous , Animals , Female , Ligands , Muscle Contraction/drug effects , Muscle Contraction/physiology , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X , Receptors, Purinergic P2X3 , Reflex , Urethane , Urethra/metabolism , Urethra/physiology , Urinary Bladder/metabolism , Urinary Bladder/physiology , Urination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...