Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36365316

ABSTRACT

The evolution of plastid genomes (plastomes) in land plants is typically conservative, with extensive structural rearrangements present in only a few groups. Early Southern blot analysis identified two Lobelia species that minimally required deletion of the plastid gene accD and five inversions to account for their plastome arrangement relative to the ancestral organization. Sixty alternative 5-step inversion scenarios could account for the observed arrangement, but only one scenario was consistent with the criterion of 'common cause' attributable to a putative rearrangement hot spot at the accD deletion-site. Plastome sequencing demonstrated that this previously hypothesized inversion order is historically accurate. Detailed reconstructions of the ancestral plastome organization before and after each inversion are presented herein. Stem-loop and disruption-rescue models were evaluated for each inversion. One inversion has an obvious stem-loop basis, but the other four inversions were primarily caused by serial insertion of foreign (extra-plastid) DNA bearing large open-reading frames that disrupted plastome organization at the accD deletion-site, and complete plastomes were rescued by seemingly arbitrary ligation or fortuitous recombination at the other inversion endpoint. Transposed copies of DNA segments from elsewhere in the plastome are frequently inserted at inversion junctions, and four junctions are consistent with the stem-loop ligation model.

2.
Plants (Basel) ; 11(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35336707

ABSTRACT

Variation in population sex ratio is particularly pronounced in gynodioecious angiosperms. Extremely high female frequencies in gynodioecious populations cannot be readily explained by selective forces alone. To assess the contributions of drift and gene flow to extreme sex-ratio variation, we documented sex ratio and population size in 92 populations of Lobelia siphilitica across its range and genotyped plants using plastid and nuclear genetic markers. Similarity in spatial patterns of genetic and demographic variables may suggest that drift and/or gene flow have contributed to population sex-ratio variation in L. siphilitica. We found strong spatial structuring of extremely high female frequencies: populations with >50% female plants are restricted to the south−central portion of the range. However, we did not detect any spatial structuring in population size nor metrics of genetic diversity, suggesting that extreme variation in female frequency is not strongly affected by drift or gene flow. Extreme sex-ratio variation is frequently observed in gynodioecious plants, but its causes are difficult to identify. Further investigation into mechanisms that create or maintain the spatial structure of sex ratios in gynodioecious species will provide much needed insight.

3.
Evodevo ; 13(1): 5, 2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35125117

ABSTRACT

BACKGROUND: CYCLOIDEA (CYC)-like transcription factors pattern floral symmetry in most angiosperms. In core eudicots, two duplications led to three clades of CYC-like genes: CYC1, CYC2, and CYC3, with orthologs of the CYC2 clade restricting expression dorsally in bilaterally symmetrical flowers. Limited data from CYC3 suggest that they also play a role in flower symmetry in some asterids. We examine the evolution of these genes in Campanulaceae, a group that contains broad transitions between radial and bilateral floral symmetry and 180° resupination (turning upside-down by twisting pedicle). RESULTS: We identify here all three paralogous CYC-like clades across Campanulaceae. Similar to other core eudicots, we show that CamCYC2 duplicated near the time of the divergence of the bilaterally symmetrical and resupinate Lobelioideae. However, in non-resupinate, bilaterally symmetrical Cyphioideae, CamCYC2 appears to have been lost and CamCYC3 duplicated, suggesting a novel genetic basis for bilateral symmetry in Cyphioideae. We additionally, utilized qRT-PCR to examine the correlation between CYC-like gene expression and shifts in flower morphology in four species of Lobelioideae. As expected, CamCYC2 gene expression was dorsoventrally restricted in bilateral symmetrical flowers. However, because Lobelioideae have resupinate flowers, both CamCYC2A and CamCYC2B are highly expressed in the finally positioned ventral petal lobes, corresponding to the adaxial side of the flower relative to meristem orientation. CONCLUSIONS: Our sequences across Campanulaceae of all three of these paralogous groups suggests that radially symmetrical Campanuloideae duplicated CYC1, Lobelioideae duplicated CYC2 and lost CYC3 early in their divergence, and that Cyphioideae lost CYC2 and duplicated CYC3. This suggests a dynamic pattern of duplication and loss of major floral patterning genes in this group and highlights the first case of a loss of CYC2 in a bilaterally symmetrical group. We illustrate here that CYC expression is conserved along the dorsoventral axis of the flower even as it turns upside-down, suggesting that at least late CYC expression is not regulated by extrinsic factors such as gravity. We additionally show that while the pattern of dorsoventral expression of each paralog remains the same, CamCYC2A is more dominant in species with shorter relative finally positioned dorsal lobes, and CamCYC2B is more dominant in species with long dorsal lobes.

4.
Am J Bot ; 104(6): 924-938, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28645921

ABSTRACT

PREMISE OF THE STUDY: Rapid radiations are difficult to reconstruct when organismal diversification and biogeographic movement outpace the evolution of genes typically used in phylogenetic analyses. The 125 kb of unique sequence from complete plastid genomes (= plastomes) largely solves the molecular sampling problem, and taxon sampling that triangulates the base of each major subclade largely solves the long-branch attraction problem. This combination of molecular and phylogenetic sampling is used to reconstruct the cosmopolitan radiation of lobeliads, with special focus on the origin of the giant lobelias. METHODS: An alignment of 18 previously generated and 61 new plastomes was analyzed to produce the phylogenetic estimate upon which the biogeographic reconstruction was based. KEY RESULTS: Originating in southern Africa, the Lobeliaceae underwent a spectacular cosmopolitan radiation about 20 million years ago. One lineage colonized Madagascar and eastern Asia, which was the source area for the evolution of the giant lobelias. A second lineage colonized the Mediterranean and North America, in quick succession. South America and Australia were also colonized from South Africa, most likely as independent events, but detailed biogeographic reconstruction is limited by inferred extinction events. The south Pacific segregate genera Apetahia and Sclerotheca are inferred to have Hawaiian ancestry. The East African radiation independently reached Ethiopia, West Africa, and Brazil. CONCLUSIONS: With adequate molecular and taxon sampling, many details of rapid radiations can be accurately inferred. However, not all lineages survived, and analyses of extant species cannot recover details that have been lost due to extinction.


Subject(s)
Biological Evolution , Lobelia/classification , Phylogeny , Sequence Analysis, DNA
5.
Proc Natl Acad Sci U S A ; 111(30): 11097-102, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25024223

ABSTRACT

Why have some plants lost the organizational stability in plastid genomes (plastomes) that evolved in their algal ancestors? During the endosymbiotic transformation of a cyanobacterium into the eukaryotic plastid, most cyanobacterial genes were transferred to the nucleus or otherwise lost from the plastome, and the resulting plastome architecture in land plants confers organizational stability, as evidenced by the conserved gene order among bryophytes and lycophytes, whereas ferns, gymnosperms, and angiosperms share a single, 30-kb inversion. Although some additional gene losses have occurred, gene additions to angiosperm plastomes were previously unknown. Plastomes in the Campanulaceae sensu lato have incorporated dozens of large ORFs (putative protein-coding genes). These insertions apparently caused many of the 125+ large inversions now known in this small eudicot clade. This phylogenetically restricted phenomenon is not biogeographically localized, which indicates that these ORFs came from the nucleus or (less likely) a cryptic endosymbiont.


Subject(s)
Campanulaceae/genetics , Evolution, Molecular , Genome, Plastid/genetics , Open Reading Frames , Phylogeny , Plastids/genetics
6.
Science ; 342(6165): 1468-73, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24357311

ABSTRACT

We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.


Subject(s)
DNA, Mitochondrial/genetics , Gene Transfer, Horizontal , Genome, Plant , Mitochondrial Dynamics , Tracheophyta/genetics , Base Sequence , Bryophyta/classification , Bryophyta/genetics , Chlorophyta/classification , Chlorophyta/genetics , Membrane Fusion , Molecular Sequence Data , Phylogeny , Tracheophyta/classification
7.
Mol Phylogenet Evol ; 52(3): 806-24, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19398024

ABSTRACT

Impatiens comprises more than 1000 species and is one of the largest genera of flowering plants. The genus has a subcosmopolitan distribution, yet most of its evolutionary history is unknown. Diversification analyses, divergence time estimates and historical biogeography, illustrated that the extant species of Impatiens originated in Southwest China and started to diversify in the Early Miocene. Until the Early Pliocene, the net diversification rate within the genus was fairly slow. Since that time, however, approximately 80% of all Impatiens lineages have originated. This period of rapid diversification coincides with the global cooling of the Earth's climate and subsequent glacial oscillations. Without this accelerated diversification rate, Impatiens would only have contained 1/5th of its current number of species, thereby indicating the rapid radiation of the genus.


Subject(s)
Evolution, Molecular , Genetic Speciation , Impatiens/genetics , Phylogeny , Cell Nucleus/genetics , China , Climate , DNA, Chloroplast/genetics , DNA, Plant/genetics , Impatiens/classification , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...