Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 114068, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38614085

ABSTRACT

The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.


Subject(s)
Brain , Mice, Knockout , Penetrance , X Chromosome Inactivation , X Chromosome Inactivation/genetics , Animals , Female , Mice , Brain/metabolism , Male , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Behavior, Animal , Mice, Inbred C57BL , Mosaicism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology
2.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293074

ABSTRACT

Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.

3.
Neuron ; 109(3): 545-559.e8, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33290731

ABSTRACT

The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.


Subject(s)
Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Nerve Net/diagnostic imaging , Neurons/physiology , Animals , Brain/cytology , Connectome , Default Mode Network/cytology , Magnetic Resonance Imaging , Mice , Nerve Net/cytology , Neurons/cytology
4.
Nature ; 575(7781): 195-202, 2019 11.
Article in English | MEDLINE | ID: mdl-31666704

ABSTRACT

The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/cytology , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Thalamus/anatomy & histology , Thalamus/cytology , Animals , Axons/physiology , Cerebral Cortex/physiology , Female , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Thalamus/physiology
5.
Netw Neurosci ; 3(1): 217-236, 2019.
Article in English | MEDLINE | ID: mdl-30793081

ABSTRACT

Knowledge of mesoscopic brain connectivity is important for understanding inter- and intraregion information processing. Models of structural connectivity are typically constructed and analyzed with the assumption that regions are homogeneous. We instead use the Allen Mouse Brain Connectivity Atlas to construct a model of whole-brain connectivity at the scale of 100 µm voxels. The data consist of 428 anterograde tracing experiments in wild type C57BL/6J mice, mapping fluorescently labeled neuronal projections brain-wide. Inferring spatial connectivity with this dataset is underdetermined, since the approximately 2 × 105 source voxels outnumber the number of experiments. To address this issue, we assume that connection patterns and strengths vary smoothly across major brain divisions. We model the connectivity at each voxel as a radial basis kernel-weighted average of the projection patterns of nearby injections. The voxel model outperforms a previous regional model in predicting held-out experiments and compared with a human-curated dataset. This voxel-scale model of the mouse connectome permits researchers to extend their previous analyses of structural connectivity to much higher levels of resolution, and it allows for comparison with functional imaging and other datasets.

6.
J Comp Neurol ; 527(13): 2122-2145, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30311654

ABSTRACT

A variety of Alzheimer's disease (AD) mouse models overexpress mutant forms of human amyloid precursor protein (APP), producing high levels of amyloid ß (Aß) and forming plaques. However, the degree to which these models mimic spatiotemporal patterns of Aß deposition in brains of AD patients is unknown. Here, we mapped the spatial distribution of Aß plaques across age in three APP-overexpression mouse lines (APP/PS1, Tg2576, and hAPP-J20) using in vivo labeling with methoxy-X04, high throughput whole brain imaging, and an automated informatics pipeline. Images were acquired with high resolution serial two-photon tomography and labeled plaques were detected using custom-built segmentation algorithms. Image series were registered to the Allen Mouse Brain Common Coordinate Framework, a 3D reference atlas, enabling automated brain-wide quantification of plaque density, number, and location. In both APP/PS1 and Tg2576 mice, plaques were identified first in isocortex, followed by olfactory, hippocampal, and cortical subplate areas. In hAPP-J20 mice, plaque density was highest in hippocampal areas, followed by isocortex, with little to no involvement of olfactory or cortical subplate areas. Within the major brain divisions, distinct regions were identified with high (or low) plaque accumulation; for example, the lateral visual area within the isocortex of APP/PS1 mice had relatively higher plaque density compared with other cortical areas, while in hAPP-J20 mice, plaques were densest in the ventral retrosplenial cortex. In summary, we show how whole brain imaging of amyloid pathology in mice reveals the extent to which a given model recapitulates the regional Aß deposition patterns described in AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides , Brain/pathology , Neuroimaging/methods , Animals , Disease Models, Animal , Image Processing, Computer-Assisted , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...