Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vision Res ; 86: 59-65, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23628451

ABSTRACT

The presence of a general global motion processing deficit in amblyopia is now well established, although its severity may depend on image speed and amblyopia type, but its underlying cause(s) is still largely indeterminate. To address this issue and to characterize further the nature of the global motion perception deficit in human amblyopia, the effects of varying spatial offset (jump size-Δs) and temporal offset (delay between positional updates-Δt) in discriminating global motion for a range of speeds (1.5, 3 and 9°/s) in both amblyopic and normal vision were evaluated. For normal adult observers (NE) and the non-amblyopic eye (FE) motion coherence thresholds measured when Δt was varied were significantly higher than those when Δs was varied. Furthermore when Δt was varied, thresholds rose significantly as the speed of image motion decreased for both NEs and FEs. AE thresholds were higher overall than the other eyes and appeared independent of both the method used to create movement and speed. These results suggest that the spatial and temporal limits underlying the perception of global motion are different. In addition degrading the smoothness of motion has comparatively little effect on the motion mechanisms driven by the AE, suggesting that the internal noise associated with encoding motion direction is relatively high.


Subject(s)
Amblyopia/physiopathology , Motion Perception/physiology , Space Perception/physiology , Adult , Analysis of Variance , Female , Humans , Male , Photic Stimulation/methods , Sensory Thresholds/physiology , Time Factors , Visual Acuity/physiology , Young Adult
2.
Vision Res ; 51(18): 2008-20, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21840334

ABSTRACT

It is well established that amblyopes exhibit deficits in processing first-order (luminance-defined) patterns. This is readily manifest by measuring spatiotemporal sensitivity (i.e. the "window of visibility") to moving luminance gratings. However the window of visibility to moving second-order (texture-defined) patterns has not been systematically studied in amblyopia. To address this issue monocular modulation sensitivity (1/threshold) to first-order motion and four different varieties of second-order motion (modulations of either the contrast, flicker, size or orientation of visual noise) was measured over a five-octave range of spatial and temporal frequencies. Compared to normals amblyopes are not only impaired in the processing of first-order motion, but overall they exhibit both higher thresholds and a much narrower window of visibility to second-order images. However amblyopia can differentially impair the perception of some types of second-order motion much more than others and crucially the precise pattern of deficits varies markedly between individuals (even for those with the same conventional visual acuity measures). For the most severely impaired amblyopes certain second-order (texture) cues to movement in the environment are effectively invisible. These results place important constraints on the possible architecture of models of second-order motion perception in human vision.


Subject(s)
Amblyopia/physiopathology , Motion Perception/physiology , Adult , Contrast Sensitivity/physiology , Humans , Middle Aged , Pattern Recognition, Visual , Photic Stimulation/methods , Sensory Thresholds/physiology , Vision, Monocular/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...