Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Bioorg Med Chem Lett ; 29(4): 659-663, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30638874

ABSTRACT

Screening of 100 acylsulfonamides from the Bristol-Myers Squibb compound collection identified the C3-cyclohexyl indole 6 as a potent Nav1.7 inhibitor. Replacement of the C2 furanyl ring of 6 with a heteroaryl moiety or truncation of this group led to the identification of 4 analogs with hNav1.7 IC50 values under 50 nM. Fluorine substitution of the truncated compound 12 led to 34 with improved potency and isoform selectivity. The inverted indole 36 also maintained good activity. Both 34 and 36 exhibited favorable CYP inhibition profiles, good membrane permeability and a low efflux ratio and, therefore, represent new leads in the search for potent and selective Nav1.7 inhibitors to treat pain.


Subject(s)
Drug Discovery , Indoles/chemistry , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Sulfonamides/pharmacology , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship , Sulfonamides/chemistry
3.
J Med Chem ; 62(2): 831-856, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30576602

ABSTRACT

3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Nav1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg. The observed efficacy could be correlated with the mouse dorsal root ganglion exposure and NaV1.7 potency associated with 29.


Subject(s)
Indazoles/chemistry , Indoles/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Neuralgia/drug therapy , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/therapeutic use , Animals , Drug Evaluation, Preclinical , HEK293 Cells , Half-Life , Humans , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neuralgia/pathology , Patch-Clamp Techniques , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/metabolism
4.
Bioorg Med Chem Lett ; 28(5): 958-962, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29439904

ABSTRACT

Replacement of the piperidine ring in the lead benzenesulfonamide Nav1.7 inhibitor 1 with a weakly basic morpholine core resulted in a significant reduction in Nav1.7 inhibitory activity, but the activity was restored by shortening the linkage from methyleneoxy to oxygen. These efforts led to a series of morpholine-based aryl sulfonamides as isoform-selective Nav1.7 inhibitors. This report describes the synthesis and SAR of these analogs.


Subject(s)
Morpholines/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Morpholines/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/chemistry
5.
Bioorg Med Chem ; 25(20): 5490-5505, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28818462

ABSTRACT

Since zwitterionic benzenesulfonamide Nav1.7 inhibitors suffer from poor membrane permeability, we sought to eliminate this characteristic by replacing the basic moiety with non-basic bicyclic acetals and monocyclic ethers. These efforts led to the discovery of the non-zwitterionic aryl sulfonamide 49 as a selective Nav1.7 inhibitor with improved membrane permeability. Despite its moderate cellular activity, 49 exhibited robust efficacy in mouse models of neuropathic and inflammatory pain and modulated translational electromyogram measures associated with activation of nociceptive neurons.


Subject(s)
Drug Discovery , Models, Biological , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/drug effects , Nociception/drug effects , Sulfonamides/pharmacology , Administration, Oral , Animals , Chronic Pain/chemically induced , Chronic Pain/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Freund's Adjuvant , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice , Molecular Structure , Neurons/metabolism , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemistry
6.
ACS Med Chem Lett ; 8(3): 366-371, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28337332

ABSTRACT

The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.

7.
J Med Chem ; 60(6): 2513-2525, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28234467

ABSTRACT

By taking advantage of certain features in piperidine 4, we developed a novel series of cyclohexylamine- and piperidine-based benzenesulfonamides as potent and selective Nav1.7 inhibitors. However, compound 24, one of the early analogs, failed to reduce phase 2 flinching in the mouse formalin test even at a dose of 100 mpk PO due to insufficient dorsal root ganglion (DRG) exposure attributed to poor membrane permeability. Two analogs with improved membrane permeability showed much increased DRG concentrations at doses of 30 mpk PO, but, confoundingly, only one of these was effective in the formalin test. More data are needed to understand the disconnect between efficacy and exposure relationships.


Subject(s)
Analgesics/chemistry , Analgesics/therapeutic use , Pain/drug therapy , Sulfonamides/chemistry , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/therapeutic use , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Drug Discovery , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/metabolism , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/pharmacology , Piperidines/therapeutic use , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/pharmacology , Benzenesulfonamides
8.
ACS Med Chem Lett ; 8(1): 133-137, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105289

ABSTRACT

We describe the synthesis of quinuclidine-containing spiroimidates and their utility as α7 nicotinic acetylcholine receptor (nAChR) partial agonists. A convergent synthetic route allowed for rapid SAR investigation and provided a diverse set of fused 6,5-heteroaryl analogs. Two potent and selective α7 nAChR partial agonists, (1'S,3'R,4'S)-N-(7-bromopyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (20) and (1'S,3'R,4'S)-N-(7-chloropyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (21), were identified. Both agonists improved cognition in a preclinical rodent model of learning and memory. Additionally, 5-HT3A receptor SAR suggested the presence of a steric site that when engaged led to significant loss of affinity at that receptor.

9.
Eur J Pharmacol ; 799: 16-25, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28132910

ABSTRACT

The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1µM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3µM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1µM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1µM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.


Subject(s)
Phenylpropionates/pharmacology , Piperazines/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Acetylcholine/pharmacology , Allosteric Regulation/drug effects , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Kinetics
10.
J Med Chem ; 59(24): 11171-11181, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27958732

ABSTRACT

The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.


Subject(s)
Cyclooctanes/pharmacology , Drug Design , Nicotinic Agonists/pharmacology , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Animals , Cyclooctanes/chemical synthesis , Cyclooctanes/chemistry , Dose-Response Relationship, Drug , Humans , Maze Learning/drug effects , Mice , Molecular Structure , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
11.
J Pharmacol Exp Ther ; 354(3): 340-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109678

ABSTRACT

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.


Subject(s)
Allosteric Regulation/drug effects , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Animals , CHO Cells , Cell Line , Cells, Cultured , Cricetulus , HEK293 Cells , Humans , Mice , Rats , Schizophrenia/drug therapy
13.
Bioorg Med Chem Lett ; 23(6): 1684-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23414838

ABSTRACT

High throughput screening led to the identification of a novel series of quinolone α7 nicotinic acetylcholine receptor (nAChR) agonists. Optimization of an HTS hit (1) led to 4-phenyl-1-(quinuclidin-3-ylmethyl)quinolin-2(1H)-one, which was found to be potent and selective. Poor brain penetrance in this series was attributed to transporter-mediated efflux, which was in turn due to high pKa. A novel 4-fluoroquinuclidine significantly lowered the pKa of the quinuclidine moiety, reducing efflux as measured by a Caco-2 assay.


Subject(s)
Nicotinic Agonists/chemistry , Quinolones/chemistry , Receptors, Nicotinic/chemistry , Animals , Caco-2 Cells , Drug Evaluation, Preclinical , Humans , Kinetics , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/metabolism , Quinolones/chemical synthesis , Quinolones/metabolism , Rats , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
14.
Biochem Biophys Res Commun ; 366(1): 48-53, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18053804

ABSTRACT

Oral administration of sodium pyrithione (NaP) causes hindlimb weakness in rodents, but not in primates. Previous work using Aplysia neurons has demonstrated that NaP produces a persistent influx of Ca(2+) ions across the plasma membrane. To determine whether this also occurs in mammalian neurons and whether this could underlie the inter-species difference between rodents and primates, we have tested the effects of NaP on intracellular Ca(2+) levels ([Ca(2+)](i)) in rat and monkey motor neurons in vitro. Motor neurons present in spinal cord slices from rhesus monkey embryos (E37 and 56) and from rat E16 were dissected and cultured on glass coverslips. Following 2 weeks (rhesus) or 2-3 days (rat) in culture, neurons were loaded with fura-PE3/AM, and examined for [Ca(2+)](i) changes in response to NaP. Rhesus motor neurons were identified by immunostaining for Islet-1 (MN specific antigen) and neuron specific enolase (NSE). Motor neurons from both species exhibited dose-dependent NaP-evoked increases in [Ca(2+)](i) However, the dose-response curve for the Rhesus motor neurons was significantly shifted to the right of the rat dose-response curve, whereas the overall amplitude of the Ca(2+) rise was similar in both species. As shown previously for the Aplysia neurons, the action of NaP is attenuated by SKF 96365, an inhibitor of store-operated calcium entry. In contrast the action of NaP is unaffected by nifedipine and tetrodotoxin, blockers of voltage-dependent Ca(2+) and Na(+) channels, respectively, or by ouabain, an inhibitor of the plasma membrane Na(+)/K(+) ATPase. Our results indicate that the NaP-induced increase in [Ca(2+)](i) is conserved across species and suggest that the toxicological sensitivity of rodent over primate to pyrithione could be due to the enhanced sensitivity of rodent motor neurons to NaP-evoked intracellular Ca(2+) elevation.


Subject(s)
Anterior Horn Cells/metabolism , Calcium/metabolism , Pyridines/administration & dosage , Thiones/administration & dosage , Animals , Anterior Horn Cells/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Macaca mulatta , Rats , Species Specificity
15.
J Neurophysiol ; 96(5): 2688-98, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16885525

ABSTRACT

Although store-operated Ca(2+) influx has been well-studied in nonneuronal cells, an understanding of its nature in neurons remains poor. In the bag cell neurons of Aplysia californica, prior work has suggested that a Ca(2+) entry pathway can be activated by Ca(2+) store depletion. Using fura-based imaging of intracellular Ca(2+) in cultured bag cell neurons, we now characterize this pathway as store-operated Ca(2+) influx. In the absence of extracellular Ca(2+), the endoplasmic reticulum Ca(2+)-ATPase inhibitors, cyclopiazonic acid (CPA) or thapsigargin, depleted intracellular stores and elevated intracellular free Ca(2+). With the subsequent addition of extracellular Ca(2+), a prominent Ca(2+) influx was observed. The ryanodine receptor agonist, chloroethylphenol (CEP), also increased intracellular Ca(2+) but did not initiate store-operated Ca(2+) influx, despite overlap between CEP- and CPA-sensitive stores. Bafilomycin A, a vesicular H(+)-ATPase inhibitor, liberated intracellular Ca(2+) from acidic stores and attenuated subsequent Ca(2+) influx, presumably by replenishing CPA-depleted stores. Store-operated Ca(2+) influx was partially blocked by low concentrations of La(3+) or BTP2, and strongly inhibited by either 1-[b-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) or a high concentration of Ni(2+). Regarding IP(3) receptor blockers, 2-aminoethyldiphenyl borate, but not xestospongin C, prevented store-operated Ca(2+) influx. However, jasplakinolide, an actin stabilizer reported to inhibit this pathway in smooth muscle cell lines, was ineffective. The bag cell neurons initiate reproductive behavior through a prolonged afterdischarge associated with intracellular Ca(2+) release and neuropeptide secretion. Store-operated Ca(2+) influx may serve to replenish stores depleted during the afterdischarge or participate in the release of peptide that triggers behavior.


Subject(s)
Aplysia/physiology , Calcium Channels/physiology , Calcium Signaling/physiology , Neurons/physiology , Anilides/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Electrophysiology , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , In Vitro Techniques , Indicators and Reagents , Indoles/pharmacology , Inositol 1,4,5-Trisphosphate/pharmacology , Lanthanum/pharmacology , Macrocyclic Compounds/pharmacology , Membrane Potentials/physiology , Nickel/pharmacology , Oxazoles/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Thapsigargin/pharmacology , Thiadiazoles/pharmacology
16.
J Pharmacol Exp Ther ; 313(1): 250-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15608074

ABSTRACT

BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] produced a concentration-dependent membrane hyperpolarization of cultured human bladder myocytes, assessed as either a reduction in fluorescence of the voltage-sensitive dye bis-(1,2-dibutylbarbituric acid)trimethine oxonol (EC50 = 1.26 +/- 0.6 microM) or by direct electrophysiological measurement (EC50 = 1.49 +/- 0.08 microM). BL-1249 also produced a membrane hyperpolarization of acutely dissociated rat bladder myocytes. Voltage-clamp studies in human bladder cells revealed that BL-1249 activated an instantaneous, noninactivating current that reversed near E(K). The BL-1249-evoked outward K+ current was insensitive to blockade by glyburide, tetraethylammonium, iberiotoxin, 4-aminopyridine, apamin, or Mg2+. However, the current was inhibited by extracellular Ba2+ (10 mM). In in vitro organ bath experiments, BL-1249 produced a concentration-dependent relaxation of 30 mM KCl-induced contractions in rat bladder strips (EC50 = 1.12 +/- 0.37 microM), yet had no effect on aortic strips up to the highest concentration tested (10 microM). The bladder relaxation produced by BL-1249 was partially blocked by Ba2+ (1 and 10 mM) but not by apamin, iberiotoxin, 4-aminopyridine, glyburide, or tetraethylammonium. In an anesthetized rat model, BL-1249 (1 mg/kg i.v.) decreased the number of isovolumic contractions, without significantly affecting blood pressure. Thus, BL-1249 behaves as a potassium channel activator that exhibits bladder versus vascular selectivity both in vitro and in vivo. A survey of potassium channels exhibiting sensitivity to extracellular Ba2+ at millimolar concentration revealed that the expression of the K2P2.1 (TREK-1) channel was relatively high in human bladder cells versus human aortic cells, suggesting this channel as a possible candidate target for BL-1249.


Subject(s)
Muscle, Smooth/drug effects , Potassium Channels/agonists , Tetrahydronaphthalenes/pharmacology , Tetrazoles/pharmacology , Urinary Bladder/drug effects , Anesthesia , Animals , Barium/pharmacology , Blood Pressure/drug effects , Humans , Male , Membrane Potentials/drug effects , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
17.
Bioorg Med Chem Lett ; 15(2): 363-6, 2005 Jan 17.
Article in English | MEDLINE | ID: mdl-15603955

ABSTRACT

Replacement of the morpholinyl moiety in (S,E)-N-[1-(3-morpholinophenyl)ethyl]-3-phenylacrylamide (1) with heteroaryl groups led to the identification of (S,E)-N-1-[3-(6-fluoropyridin-3-yl)phenyl]ethyl-3-(2-fluorophenyl)acrylamide (5) as a potent KCNQ2 potassium channel opener. Among this series of heteroaryl substituted acrylamides, (S,E)-N-1-[3-(1H-pyrazol-1-yl)phenyl]ethyl-3-(2-fluorophenyl)acrylamide (9) exhibits balanced potency and efficacy. The syntheses and the KCNQ2 opener activity of this series of acrylamides are described.


Subject(s)
Action Potentials/drug effects , Potassium Channels, Voltage-Gated/metabolism , Acrylamides/chemical synthesis , Acrylamides/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , KCNQ2 Potassium Channel , Molecular Structure
18.
Bioorg Med Chem Lett ; 14(17): 4533-7, 2004 Sep 06.
Article in English | MEDLINE | ID: mdl-15357987

ABSTRACT

Bioisosteric replacement studies led to the identification of N-(1-benzo[1,3]dioxol-5-yl-ethyl)-3-(2-chloro-phenyl)-acrylamide ((S)-3) as a highly potent KCNQ2 opener, and 3-(2,6-difluoro-phenyl)-N-[1-(2,3-dihydro-benzofuran-5-yl)-ethyl]-acrylamide ((S)-4), and N-[1-(2,3-dihydro-1H-indol-5-yl)-ethyl]-3-(2-fluoro-phenyl)-acrylamide ((S)-5) as highly efficacious KCNQ2 openers. In contrast, their respective R enantiomers showed significantly less or no appreciable KCNQ2 opener activity even at the highest concentration tested (10 microM). Because of its high potency and moderate efficacy as well as its convenient synthesis, (+/-)-3 was selected as a reference compound for analyzing efficacies of KCNQ openers in electrophysiology studies. Compounds (S)-4 and (S)-5 demonstrated significant activity in reducing neuronal hyperexcitability in rat hippocampal slices. The synthesis and the KCNQ2 opener activity of these acrylamides are described.


Subject(s)
Acrylamides/chemistry , Benzofurans/chemistry , Potassium Channels, Voltage-Gated/metabolism , Acrylamides/pharmacology , Animals , Benzofurans/pharmacology , Cell Line , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Humans , KCNQ2 Potassium Channel , Rats
19.
J Neurobiol ; 60(4): 411-23, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15307146

ABSTRACT

The ability of sodium pyrithione (NaP), an agent that produces delayed neuropathy in some species, to alter neuronal physiology was accessed using ratiometric imaging of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in fura PE-filled cultured Aplysia bag cell neurons. Bath-application of NaP evoked a [Ca(2+)](i) elevation in both somata and neurites with an EC(50) of approximately 300 nM and a Hill coefficient of approximately 1. The response required the presence of external Ca(2+), had an onset of 3-5 min, and generally reached a maximum within 30 min. 2-Methyl-sulfonylpyridine, a metabolite and close structural analog of NaP, did not elevate [Ca(2+)](i). Under whole-cell current-clamp recording, NaP produced a approximately 14 mV depolarization of resting membrane potential that was dependent on external Ca(2+). These data suggested that NaP stimulates Ca(2+) entry across the plasma membrane. To minimize the possibility that a change in cytosolic pH was the basis for NaP-induced Ca(2+) entry, bag cell neuron intracellular pH was estimated with the dye 2',7'-bis(carboxyethyl-5(6)-carboxy-fluorescein acetoxy methylester. Exposure of the neurons to NaP did not alter intracellular pH. The slow onset and sustained nature of the NaP response suggested that a cation exchange mechanism coupled either directly or indirectly to Ca(2+) entry could underlie the phenomenon. However, neither ouabain, a Na(+)/K(+) ATPase inhibitor, nor removal of extracellular Na(+), which eliminates Na(+)/Ca(2+) exchanger activity, altered the NaP-induced [Ca(2+)](i) elevation. Finally, the possibility that NaP gates a Ca(2+)-permeable ion channel in the plasma membrane was examined. NaP did not appear to activate two major forms of bag cell neuron Ca(2+)-permeable ion channels, as Ca(2+) entry was unaffected by inhibition of voltage-gated Ca(2+) channels using nifedipine or by inhibition of a voltage-dependent, nonselective cation channel using a high concentration of tetrodotoxin. In contrast, two potential store-operated Ca(2+) entry current inhibitors, SKF-96365 and Ni(2+), attenuated NaP-induced Ca(2+) entry. We conclude that NaP activates a slow, persistent Ca(2+) influx in Aplysia bag cell neurons.


Subject(s)
Aplysia/drug effects , Calcium Channels/drug effects , Ganglia, Invertebrate/drug effects , Nervous System/drug effects , Neurons/drug effects , Pyridines/pharmacology , Animals , Aplysia/cytology , Aplysia/metabolism , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cells, Cultured , Cytosol/drug effects , Cytosol/metabolism , Fura-2 , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/metabolism , Hydrogen-Ion Concentration/drug effects , Imidazoles/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Nervous System/cytology , Nervous System/metabolism , Neurons/metabolism , Neurotoxins/pharmacology , Nickel/pharmacology , Thiones
20.
Bioorg Med Chem Lett ; 14(8): 1991-5, 2004 Apr 19.
Article in English | MEDLINE | ID: mdl-15050644

ABSTRACT

(S)-N-[1-(4-Cyclopropylmethyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-ethyl]-3-(2-fluoro-phenyl)-acrylamide ((S)-2) was identified as a potent and efficacious KCNQ2 opener. This compound demonstrated significant activity in reducing neuronal hyperexcitability in rat hippocampal slices, and the inhibition mediated by (S)-2 was reversed by the KCNQ blocker linopirdine.


Subject(s)
Acrylamides/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Oxazines/pharmacology , Potassium Channels/drug effects , Acrylamides/chemical synthesis , Animals , Dose-Response Relationship, Drug , Hippocampus/metabolism , Hippocampus/pathology , Humans , KCNQ2 Potassium Channel , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Mice , Molecular Structure , Neurons/metabolism , Neurons/pathology , Oxazines/chemical synthesis , Patch-Clamp Techniques , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels, Voltage-Gated , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...