Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 18(3): e0012052, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530781

ABSTRACT

BACKGROUND: Progress in snakebite envenoming (SBE) therapeutics has suffered from a critical lack of data on the research and development (R&D) landscape. A database characterising this information would be a powerful tool for coordinating and accelerating SBE R&D. To address this need, we aimed to identify and categorise all active investigational candidates in development for SBE and all available or marketed products. METHODOLOGY/PRINCIPAL FINDINGS: In this landscape study, publicly available data and literature were reviewed to canvas the state of the SBE therapeutics market and research pipeline by identifying, characterising, and validating all investigational drug and biologic candidates with direct action on snake venom toxins, and all products available or marketed from 2015 to 2022. We identified 127 marketed products and 196 candidates in the pipeline, describing a very homogenous market of similar but geographically bespoke products and a diverse but immature pipeline, as most investigational candidates are at an early stage of development, with only eight candidates in clinical development. CONCLUSIONS/SIGNIFICANCE: Further investment and research is needed to address the shortfalls in products already on the market and to accelerate R&D for new therapeutics. This should be accompanied by efforts to converge on shared priorities and reshape the current SBE R&D ecosystem to ensure translation of innovation and access.


Subject(s)
Snake Bites , Toxins, Biological , Humans , Antivenins , Data Management , Snake Bites/therapy
2.
Sci Rep ; 14(1): 2567, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296989

ABSTRACT

Bothrops and Lachesis are two of Brazil's medically most relevant snake genera, causing tens of thousands of bites annually. Fortunately, Brazil has good accessibility to high-quality antivenoms at the genus and inter-genus level, enabling the treatment of many of these envenomings. However, the optimal use of these treatments requires that the snake species responsible for the bite is determined. Currently, physicians use a syndromic approach to diagnose snakebite, which can be difficult for medical personnel with limited training in clinical snakebite management. In this work, we have developed a novel monoclonal antibody-based multiplex lateral flow assay for differentiating Bothrops and Lachesis venoms within 15 min. The test can be read by the naked eye or (semi)-quantitatively by a smartphone supported by a 3D-printed attachment for controlling lighting conditions. The LFA can detect Bothrops and Lachesis venoms in spiked plasma and urine matrices at concentrations spanning six orders of magnitude. The LFA has detection limits of 10-50 ng/mL in spiked plasma and urine, and 50-500 ng/mL in spiked sera, for B. atrox and L. muta venoms. This test could potentially support medical personnel in correctly diagnosing snakebite envenomings at the point-of-care in Brazil, which may help improve patient outcomes and save lives.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Animals , Humans , Snake Bites/drug therapy , Snake Venoms/therapeutic use , Antivenins/therapeutic use , Crotalid Venoms/therapeutic use , Antibodies, Monoclonal/therapeutic use
3.
Anal Chim Acta ; 1272: 341306, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37355315

ABSTRACT

BACKGROUND: Brazil is home to a multitude of venomous snakes; perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom. The choice to administer antivenom depends on the severity of the envenoming, while the choice of antivenom depends on availability and on how certain the treating physician is that the patient was bitten by a bothropic snake. The diagnosis of a bothropic envenoming can be made based on expert identification of the dead snake or a photo thereof or based on a syndromic approach wherein the clinician examines the patient for characteristic manifestations of envenoming. This approach can be very effective but requires staff that has been trained in clinical snakebite management, which, unfortunately, far from all relevant staff has. RESULTS: In this article, we describe a prototype of the first lateral flow assay (LFA) capable of detecting venoms from Brazilian Bothrops spp. The monoclonal antibodies for the assay were generated using hybridoma technology and screened in sandwich enzyme-linked immunosorbent assays (ELISAs) to identify Bothrops spp.-specific antibody sandwich pairs. The prototype LFA is able to detect venom from several Bothrops spp. The LFA has a limit of detection (LoD) of 9.5 ng/mL in urine, when read with a commercial reader, and a visual LoD of approximately 25 ng/mL. SIGNIFICANCE: The work presented here serves as a proof of concept for a genus-specific venom detection kit that could support physicians in diagnosing Bothrops envenomings. Although further optimisation and testing is needed before the LFA can find clinical use, such a device could aid in decentralising antivenoms in the Brazilian Amazon and help ensure optimal snakebite management for even more victims of this highly neglected disease.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Animals , Snake Bites/diagnosis , Snake Bites/drug therapy , Antivenins/therapeutic use , Crotalid Venoms/therapeutic use , Antibodies, Monoclonal/therapeutic use
4.
Obesity (Silver Spring) ; 31(4): 977-989, 2023 04.
Article in English | MEDLINE | ID: mdl-36942420

ABSTRACT

OBJECTIVE: The aim of this study was to investigate glucose tolerance, glucagon response, and beta cell function during a 1-year maintenance period with either exercise, the glucagon-like peptide-1 receptor agonist liraglutide, or the combination after diet-induced weight loss. METHODS: In this randomized placebo-controlled trial, adults with obesity (BMI: 32-43 kg/m2 ) without diabetes underwent an 8-week low-calorie diet (800 kcal/d) and were randomized to 52 weeks of aerobic exercise, liraglutide 3.0 mg/d, exercise and liraglutide combined, or placebo. Change in glucose and glucagon response to a 3-hour mixed meal test and disposition index, as a measure of beta cell function, were measured. RESULTS: A total of 195 participants were randomized. After 1 year of treatment, the combination group had decreased postprandial glucose response by -9% (95% CI: -14% to -3%; p = 0.002), improved beta cell function by 49% (95% CI: 16% to 93%; p = 0.002), and decreased glucagon response by -18% (95% CI: -34% to -3%; p = 0.024) compared with placebo. Compared with placebo, liraglutide alone improved postprandial glucose response by -7% (95% CI: -12% to -1%; p = 0.018), but not beta cell function or glucagon. Exercise alone had similar postprandial glucose response, beta cell function, and glucagon response as placebo. CONCLUSIONS: Only the combination of exercise and liraglutide improved glucose tolerance, beta cell function, and glucagon responses after weight loss.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Adult , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon , Hypoglycemic Agents/therapeutic use , Weight Loss , Exercise , Glucose , Double-Blind Method , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy
5.
Dalton Trans ; 52(2): 281-289, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36484381

ABSTRACT

Crystallites of the W-type hexaferrites, Sr(Ni1-xZnx)2Fe16O27 (x = 0, 0.5, 1) have been aligned without applying magnetic field nor hot compaction, but through a simple synthesis process taking advantage of easy alignment of non-magnetic interacting, anisotropic-shaped precursor crystallites of goethite. The goethite precursor was prepared through a simple hydrothermal synthesis route, forming lathlike crystallites with apparent dimensions of 23.3 × 40.1 × 11.0 nm3 as extracted from powder X-ray diffraction along the a-, b- and c-axis, respectively. The calcined pellets consisted of almost phase pure W-type hexaferrites with relative small impurities of spinel ferrite (≤9.02(3) wt%). The high synthesis temperature resulted in large crystallites, which in turn caused low coercivities (Hc ≤ 5.4(1) kA m-1) and a squareness ration (Mr/Ms, remanence (Mr) over saturation magnetisation (Ms)) close to zero for all samples. The vanishing coercivity makes Mr/Ms an unsatisfying measure of preferred orientation. Quantitative texture analysis of the samples was carried out based on 2D transmission synchrotron diffraction data collected at different orientations of the samples. The texture investigations revealed alignment of the crystallites with the c-axis normal to the pressing surface of the pellets. The SrNi2Fe16O27 sample showed the highest texture index of 7.5 m.r.d.2.

6.
Diabetes Obes Metab ; 25(1): 98-109, 2023 01.
Article in English | MEDLINE | ID: mdl-36054143

ABSTRACT

AIM: The voltage-gated potassium channel Kv 11.1 is important for repolarizing the membrane potential in excitable cells such as myocytes, pancreatic α- and ß-cells. Moxifloxacin blocks the Kv 11.1 channel and increases the risk of hypoglycaemia in patients with diabetes. We investigated glucose regulation and secretion of glucoregulatory hormones in young people with and without moxifloxacin, a drug known to block the Kv 11.1 channel. MATERIALS AND METHODS: The effect of moxifloxacin (800 mg/day for 4 days) or placebo on glucose regulation was assessed in a randomized, double-blind, crossover study of young men and women (age 20-40 years and body mass index 18.5-27.5 kg/m2 ) without chronic disease, using 6-h oral glucose tolerance tests and continuous glucose monitoring. RESULTS: Thirty-eight participants completed the study. Moxifloxacin prolonged the QTcF interval and increased heart rate. Hypoglycaemia was more frequently observed with moxifloxacin, both during the 8 days of continuous glucose monitoring and during the oral glucose tolerance tests. Hypoglycaemia questionnaire scores were higher after intake of moxifloxacin. Moxifloxacin reduced the early plasma-glucose response (AUC0-30 min ) by 7% (95% CI: -9% to -4%, p < .01), and overall insulin response (AUC0-360 min ) decreased by 18% (95% CI: -24% to -11%, p < .01) and plasma glucagon increased by 17% (95% CI: 4%-33%, p = .03). Insulin sensitivity calculated as the Matsuda index increased by 11%, and MISI, an index of muscle insulin sensitivity, increased by 34%. CONCLUSIONS: In young men and women, moxifloxacin, a drug known to block the Kv 11.1 channel, increased QT interval, decreased glucose levels and was associated with increased muscle insulin sensitivity and more frequent episodes of hypoglycaemia.


Subject(s)
Fluoroquinolones , Insulin Resistance , Humans , Female , Adolescent , Young Adult , Adult , Moxifloxacin/adverse effects , Fluoroquinolones/adverse effects , Cross-Over Studies , Blood Glucose Self-Monitoring , Blood Glucose
7.
Gigascience ; 112022 04 01.
Article in English | MEDLINE | ID: mdl-35365832

ABSTRACT

Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.


Subject(s)
Genomics , Snake Venoms , Animals , Genome , Reptiles/genetics , Snake Venoms/genetics , Snakes/genetics
8.
Dalton Trans ; 51(10): 3884-3893, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35188524

ABSTRACT

Cold compacted, anisotropic shaped non-magnetically interacting precursors are used to achieve aligned strontium hexaferrites. The simple process of dry mixing platy hematite and/or rod-like goethite with strontium carbonate removes the need for external magnetic fields or high temperatures during compaction to assist in alignment. The calcined strontium hexaferrite pellets all displayed preferred orientation and high levels of phase purity (>99 wt%). The mix of goethite and strontium carbonate achieved the highest degree of magnetic alignment with Mr/Ms reaching 0.83(1) obtained by vibrating sample magnetometry. The magnetic data were supported by examining crystallographic alignment using powder X-ray diffraction as well as 2D texture synchrotron analysis.

9.
Toxicon X ; 11: 100079, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34430847

ABSTRACT

Snakebite envenoming is a major cause of morbidity and mortality in rural communities throughout the tropics. Generally, the main clinical features of snakebites are local swelling, tissue necrosis, shock, spontaneous systemic hemorrhage, incoagulable blood, paralysis, rhabdomyolysis, and acute kidney injury. These clinical manifestations result from complex biochemical venom constituents comprising of cytotoxins, hemotoxins, neurotoxins, myotoxins, and other substances. Timely diagnosis of envenoming and identification of the responsible snake species is clinically challenging in many parts of the world and necessitates prompt and thorough clinical assessment, which could be supported by the development of reliable, affordable, widely-accessible, point-of-care tests. Conventional antivenoms based on polyclonal antibodies derived from animals remain the mainstay of therapy along with supportive medical and surgical care. However, while antivenoms save countless lives, they are associated with adverse reactions, limited potency, and are relatively inefficacious against presynaptic neurotoxicity and in preventing necrosis. Nevertheless, major scientific and technological advances are facilitating the development of new molecular and immunologic diagnostic tests, as well as a new generation of antivenoms comprising human monoclonal antibodies with broader and more potent neutralization capacity and less immunogenicity. Repurposed pharmaceuticals based on small molecule inhibitors (e.g., marimastat and varespladib) used alone and in combination against enzymatic toxins, such as metalloproteases and phospholipase A2s, have shown promise in animal studies. These orally bioavailable molecules could serve as early interventions in the out-of-hospital setting if confirmed to be safe and efficacious in clinical studies. Antivenom access can be improved by the usage of drones and ensuring constant antivenom supply in remote endemic rural areas. Overall, the improvement of clinical management of snakebite envenoming requires sustained, coordinated, and multifaceted efforts involving basic and applied sciences, new technology, product development, effective clinical training, implementation of existing guidelines and therapeutic approaches, supported by improved supply of existing antivenoms.

10.
Front Immunol ; 12: 661457, 2021.
Article in English | MEDLINE | ID: mdl-33995385

ABSTRACT

Snakebite envenoming is predominantly an occupational disease of the rural tropics, causing death or permanent disability to hundreds of thousands of victims annually. The diagnosis of snakebite envenoming is commonly based on a combination of patient history and a syndromic approach. However, the availability of auxiliary diagnostic tests at the disposal of the clinicians vary from country to country, and the level of experience within snakebite diagnosis and intervention may be quite different for clinicians from different hospitals. As such, achieving timely diagnosis, and thus treatment, is a challenge faced by treating personnel around the globe. For years, much effort has gone into developing novel diagnostics to support diagnosis of snakebite victims, especially in rural areas of the tropics. Gaining access to affordable and rapid diagnostics could potentially facilitate more favorable patient outcomes due to early and appropriate treatment. This review aims to highlight regional differences in epidemiology and clinical snakebite management on a global scale, including an overview of the past and ongoing research efforts within snakebite diagnostics. Finally, the review is rounded off with a discussion on design considerations and potential benefits of novel snakebite diagnostics.


Subject(s)
Antivenins/therapeutic use , Health Services Accessibility/statistics & numerical data , Snake Bites/drug therapy , Snakes/immunology , Animals , Antivenins/immunology , Early Diagnosis , Humans , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Rural Population/statistics & numerical data , Snake Bites/diagnosis , Snake Bites/immunology , Snakes/classification , Tropical Climate
11.
Toxins (Basel) ; 12(11)2020 10 22.
Article in English | MEDLINE | ID: mdl-33105644

ABSTRACT

Snake 'dry bites' are characterized by the absence of venom being injected into the victim during a snakebite incident. The dry bite mechanism and diagnosis are quite complex, and the lack of envenoming symptoms in these cases may be misinterpreted as a miraculous treatment or as proof that the bite from the perpetrating snake species is rather harmless. The circumstances of dry bites and their clinical diagnosis are not well-explored in the literature, which may lead to ambiguity amongst treating personnel about whether antivenom is indicated or not. Here, the epidemiology and recorded history of dry bites are reviewed, and the clinical knowledge on the dry bite phenomenon is presented and discussed. Finally, this review proposes a diagnostic and therapeutic protocol to assist medical care after snake dry bites, aiming to improve patient outcomes.


Subject(s)
Snake Bites , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Snake Bites/diagnosis , Snake Bites/drug therapy , Snake Bites/history , Snake Venoms
12.
Toxins (Basel) ; 12(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32824899

ABSTRACT

In the field of antivenom research, development, and manufacture, it is often advised to follow the World Health Organization's (WHO) guidelines for the production, control, and regulation of snake antivenom immunoglobulins, which recommend the use of preincubation assays to assess the efficacy of snakebite therapeutics. In these assays, venom and antivenom are mixed and incubated prior to in vivo administration to rodents, which allows for a standardizable comparison of antivenoms with similar characteristics. However, these assays are not necessarily sufficient for therapeutics with significantly different pharmacological properties than antibody-based antivenoms, such as small molecule inhibitors, nanoparticles, and other modalities. To ensure that the in vivo therapeutic utility of completely novel toxin-neutralizing molecules with no history of use in envenoming therapy and variable pharmacokinetics is properly evaluated, such molecules must also be tested in preclinical rescue assays, where rodents are first challenged with appropriate doses of venoms or toxins, followed by the administration of neutralizing modalities after an appropriate time delay to better mimic the real-life scenarios faced by human snakebite victims. Such an approach takes the venom (or toxin) toxicokinetics, the drug pharmacokinetics, and the drug pharmacodynamics into consideration. If new modalities are only assessed in preincubation assays and not subjected to evaluation in rescue assays, the publication of neutralization data may unintentionally misrepresent the actual therapeutic efficacy and suitability of the modality being tested, and thus potentially misguide strategic decision making in the research and development of novel therapies for snakebite envenoming.


Subject(s)
Antivenins/administration & dosage , Models, Animal , Snake Bites/drug therapy , Animals , Drug Evaluation, Preclinical/methods , Humans , Immunoglobulins/administration & dosage , Snake Bites/diagnosis , Treatment Outcome
13.
Toxins (Basel) ; 12(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283690

ABSTRACT

Antibiotics are often administered with antivenom following snakebite envenomings in order to avoid secondary bacterial infections. However, to this date, no studies have evaluated whether antibiotics may have undesirable potentiating effects on snake venom. Herein, we demonstrate that four commonly used antibiotics affect the enzymatic activities of proteolytic snake venom toxins in two different in vitro assays. Similar findings in vivo could have clinical implications for snakebite management and require further examination.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fibrinogen/metabolism , Fibrinolysis/drug effects , Serine Proteases/metabolism , Snake Venoms/enzymology , Ampicillin/pharmacology , Cloxacillin/pharmacology , Kanamycin/pharmacology
14.
Toxins, v. 12, n. 11, 668, out. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3295

ABSTRACT

Snake ‘dry bites’ are characterized by the absence of venom being injected into the victim during a snakebite incident. The dry bite mechanism and diagnosis are quite complex, and the lack of envenoming symptoms in these cases may be misinterpreted as a miraculous treatment or as proof that the bite from the perpetrating snake species is rather harmless. The circumstances of dry bites and their clinical diagnosis are not well-explored in the literature, which may lead to ambiguity amongst treating personnel about whether antivenom is indicated or not. Here, the epidemiology and recorded history of dry bites are reviewed, and the clinical knowledge on the dry bite phenomenon is presented and discussed. Finally, this review proposes a diagnostic and therapeutic protocol to assist medical care after snake dry bites, aiming to improve patient outcomes.

15.
Toxicon ; 167: 67-75, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31173790

ABSTRACT

Snakebite envenoming is a devastating Neglected Tropical Disease, the treatment of which has seen relatively little innovation since the invention of antivenom serotherapy in 1894. Current antivenoms have been and continue to be invaluable in saving thousands of lives. However, these medicines are associated with a number of drawbacks pertaining to availability, safety, and efficacy. Fortunately, with the advent of novel methodologies, such as antibody discovery technologies, high-throughput drug discovery approaches, and improved methods for protein engineering, we are starting to see scientific advances in the field. This review presents relevant engineering and design considerations for exploiting these methodologies to develop next-generation antivenoms with improved safety, efficacy, and affordability. The pros and cons of different treatment modalities are discussed with regards to immunogenicity, the suitability of preclinical efficacy assays, availability of discovery methods, economic viability of production schemes, and possible regulatory approval paths.


Subject(s)
Antivenins/chemistry , Drug Design , Snake Bites/drug therapy , Animals , Antivenins/adverse effects , Antivenins/therapeutic use , Drug and Narcotic Control , Humans , Snake Venoms/immunology
16.
Nat Commun ; 9(1): 4957, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459411

ABSTRACT

In the original version of this Article, the sixth sentence of the first paragraph of the Introduction incorrectly read 'Particularly, elapid antivenoms often have an unbalanced antibody content with relatively low amounts of antibodies against small neurotoxic venom components that have low immunogenicity, which often leads to low immune cgqtns in production animals8-10'. The correct version states 'responses' instead of 'cgqtns'. This has been corrected in both the PDF and HTML versions of the Article.

17.
Nat Commun ; 9(1): 3928, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279409

ABSTRACT

The black mamba (Dendroaspis polylepis) is one of the most feared snake species of the African savanna. It has a potent, fast-acting neurotoxic venom comprised of dendrotoxins and α-neurotoxins associated with high fatality in untreated victims. Current antivenoms are both scarce on the African continent and present a number of drawbacks as they are derived from the plasma of hyper-immunized large mammals. Here, we describe the development of an experimental recombinant antivenom by a combined toxicovenomics and phage display approach. The recombinant antivenom is based on a cocktail of fully human immunoglobulin G (IgG) monoclonal antibodies capable of neutralizing dendrotoxin-mediated neurotoxicity of black mamba whole venom in a rodent model. Our results show the potential use of fully human monoclonal IgGs against animal toxins and the first use of oligoclonal human IgG mixtures against experimental snakebite envenoming.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Antivenins/chemistry , Dendroaspis , Elapid Venoms/immunology , Immunologic Factors/chemistry , Snake Bites/drug therapy , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antivenins/therapeutic use , Drug Evaluation, Preclinical , Elapid Venoms/antagonists & inhibitors , Immunologic Factors/therapeutic use , Mice , Neutralization Tests
18.
Trop Med Infect Dis ; 3(2)2018 Apr 15.
Article in English | MEDLINE | ID: mdl-30274438

ABSTRACT

With the inclusion of snakebite envenoming on the World Health Organization's list of Neglected Tropical Diseases, an incentive has been established to promote research and development effort in novel snakebite antivenom therapies. Various technological approaches are being pursued by different research groups, including the use of small molecule inhibitors against enzymatic toxins as well as peptide- and oligonucleotide-based aptamers and antibody-based biotherapeutics against both enzymatic and non-enzymatic toxins. In this article, the most recent advances in these fields are presented, and the advantages, disadvantages, and feasibility of using different toxin-neutralizing molecules are reviewed. Particular focus within small molecules is directed towards the inhibitors varespladib, batimastat, and marimastat, while in the field of antibody-based therapies, novel recombinant polyclonal plantivenom technology is discussed.

19.
Toxicon ; 146: 151-175, 2018 May.
Article in English | MEDLINE | ID: mdl-29534892

ABSTRACT

Antibody technologies are being increasingly applied in the field of toxinology. Fuelled by the many advances in immunology, synthetic biology, and antibody research, different approaches and antibody formats are being investigated for the ability to neutralize animal toxins. These different molecular formats each have their own therapeutic characteristics. In this review, we provide an overview of the advances made in the development of toxin-targeting antibodies, and discuss the benefits and drawbacks of different antibody formats in relation to their ability to neutralize toxins, pharmacokinetic features, propensity to cause adverse reactions, formulation, and expression for research and development (R&D) purposes and large-scale manufacturing. A research trend seems to be emerging towards the use of human antibody formats as well as camelid heavy-domain antibody fragments due to their compatibility with the human immune system, beneficial therapeutic properties, and the ability to manufacture these molecules cost-effectively.


Subject(s)
Antibodies/chemistry , Antivenins/pharmacology , Venoms/immunology , Animals , Antibodies/pharmacology , Antivenins/chemistry , Camelus , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...