Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730702

ABSTRACT

The largest portion of breast cancer patients diagnosed after 70 years of age present with hormone receptor-positive (HR+) breast cancer subtypes. Cyclin-dependent kinase (CDK) 4/6 inhibitor treatment, in conjunction with endocrine therapy, has become standard-of-care for metastatic HR+ breast cancer. In total, 320 patients with metastatic breast cancer receiving CDK4/6 inhibitor combined with fulvestrant or an aromatase inhibitor were enrolled in an ongoing observational study or were included in an IRB-approved retrospective study. All patients receiving CDK4/6 inhibitor-based therapy that were ≥70 years of age (n = 111) displayed prolonged progression-free survival (27.6 months) as compared to patients <70 years of age (n = 209, 21.1 months, HR = 1.38, p < 0.05). Specifically, patients receiving a CDK4/6 inhibitor with an aromatase inhibitor who were ≥70 years of age (n = 79) displayed exceptionally prolonged progression-free survival (46.0 months) as compared to patients receiving the same treatment who were <70 years of age (n = 161, 21.8 months, HR = 1.71, p < 0.01). However, patients ≥70 years of age also experienced more frequent adverse responses to CDK4/6 inhibitor-based treatment leading to dose reduction, hold, or discontinuation than the younger cohort (69% and 53%, respectively). Treatment strategies that may decrease toxicity without affecting efficacy (such as dose titration) are worth further exploration.

2.
Cancer Discov ; 14(7): 1302-1323, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38683161

ABSTRACT

The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast CAFs (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in HER2+, ER+, and triple-negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development. Significance: senCAFs limit NK cell-mediated killing, thereby contributing to breast cancer progression. Thus, targeting senCAFs could be a clinically viable approach to limit tumor progression. See related article by Belle et al., p. 1324.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Disease Progression , Tumor Microenvironment , Animals , Female , Mice , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Tumor Microenvironment/immunology , Killer Cells, Natural/immunology , Cellular Senescence/immunology
3.
Sci Rep ; 14(1): 9360, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653793

ABSTRACT

In the course of the Horizon 2020 project HighNESS, a second moderator concept has been developed for the European Spallation Source, which complements the currently built moderator and is optimized for high intensity with a large viewable surface area. In this work we introduce conceptual designs for neutron instruments for condensed matter research designed to make optimal use of the capabilities of this moderator. The focus is on two concepts for small-angle neutron scattering and one neutron imaging instrument, which are intended to complement corresponding instruments that are already under construction at the European Spallation Source. One small-angle neutron scattering instrument concept resembles a conventional pinhole collimator geometry and aims to profit from the proposed second moderator by enabling to illuminate larger samples and providing particularly high resolution, drawing on a 30 m collimation and corresponding detector distance. A second small-angle neutron scattering instrument concept adopts nested mirror optics that enable to efficiently exploit the large moderator size and provide high resolution by focusing on the detector. The neutron imaging instrument concept is a typical pinhole instrument that can be found at continuous sources and draws on the corresponding strengths of high flux and large homogeneous fields-of-view, while still providing moderate wavelength resolution for advanced imaging methods.

4.
Cancer Res ; 84(7): 1115-1132, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38294344

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that lacks effective treatment options, highlighting the need for developing new therapeutic interventions. Here, we assessed the response to pharmacologic inhibition of KRAS, the central oncogenic driver of PDAC. In a panel of PDAC cell lines, inhibition of KRASG12D with MRTX1133 yielded variable efficacy in suppressing cell growth and downstream gene expression programs in 2D cultures. On the basis of CRISPR-Cas9 loss-of-function screens, ITGB1 was identified as a target to enhance the therapeutic response to MRTX1133 by regulating mechanotransduction signaling and YAP/TAZ expression, which was confirmed by gene-specific knockdown and combinatorial drug synergy. Interestingly, MRTX1133 was considerably more efficacious in 3D cell cultures. Moreover, MRTX1133 elicited a pronounced cytostatic effect in vivo and controlled tumor growth in PDAC patient-derived xenografts. In syngeneic models, KRASG12D inhibition led to tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicated that MRTX1133-mediated KRAS inhibition enhanced IFNγ signaling and induced antigen presentation that modulated the tumor microenvironment. Further investigation of the immunologic response using single-cell sequencing and multispectral imaging revealed that tumor regression was associated with suppression of neutrophils and influx of effector CD8+ T cells. Together, these findings demonstrate that both tumor cell-intrinsic and -extrinsic events contribute to response to MRTX1133 and credential KRASG12D inhibition as a promising therapeutic strategy for a large percentage of patients with PDAC. SIGNIFICANCE: Pharmacologic inhibition of KRAS elicits varied responses in pancreatic cancer 2D cell lines, 3D organoid cultures, and xenografts, underscoring the importance of mechanotransduction and the tumor microenvironment in regulating therapeutic responses.


Subject(s)
Carcinoma, Pancreatic Ductal , Heterocyclic Compounds, 2-Ring , Naphthalenes , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Microenvironment , Mechanotransduction, Cellular , Mutation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor
5.
Trends Cell Biol ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37953123

ABSTRACT

In the commonly accepted paradigm for control of the mammalian cell cycle, sequential cyclin-dependent kinase (CDK) and cyclin activities drive the orderly transition from G1 to S phase. However, recent studies using different technological approaches and examining a broad range of cancer cell types are challenging this established paradigm. An alternative model is evolving in which cell cycles utilize different drivers and take different trajectories through the G1/S transition. We are discovering that cancer cells in particular can adapt their drivers and trajectories, which has important implications for antiproliferative therapies. These studies have helped to refine an understanding of how CDK inhibition impinges on proliferation and have significance for understanding fundamental features of cell biology and cancer.

6.
Sci Rep ; 13(1): 17573, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845245

ABSTRACT

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

7.
NPJ Precis Oncol ; 7(1): 90, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704753

ABSTRACT

Despite widespread use and a known mechanism of action for CDK4/6 inhibitors in combination with endocrine therapy, features of disease evolution and determinants of therapeutic response in the real-world setting remain unclear. Here, a cohort of patients treated with standard-of-care combination regimens was utilized to explore features of disease and determinants of progression-free survival (PFS) and overall survival (OS). In this cohort of 280 patients, >90% of patients were treated with palbociclib in combination with either an aromatase inhibitor (AI) or fulvestrant (FUL). Most of these patients had modified Scarff-Bloom-Richardson (SBR) scores, and ER, HER2, and PR immunohistochemistry. Both the SBR score and lack of PR expression were associated with shorter PFS in patients treated with AI combinations and remained significant in multivariate analyses (HR = 3.86, p = 0.008). Gene expression analyses indicated substantial changes in cell cycle and estrogen receptor signaling during the course of treatment. Furthermore, gene expression-based subtyping indicated that predominant subtypes changed with treatment and progression. The luminal B, HER2, and basal subtypes exhibited shorter PFS in CDK4/6 inhibitor combinations when assessed in the pretreatment biopsies; however, they were not associated with OS. Using unbiased approaches, cell cycle-associated gene sets were strongly associated with shorter PFS in pretreatment biopsies irrespective of endocrine therapy. Estrogen receptor signaling gene sets were associated with longer PFS particularly in the AI-treated cohort. Together, these data suggest that there are distinct pathological and biological features of HR+/HER2- breast cancer associated with response to CDK4/6 inhibitors. Clinical trial registration number: NCT04526587.

8.
Proc Natl Acad Sci U S A ; 120(39): e2307049120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37725646

ABSTRACT

The dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals. We directly visualize the generation, propagation, branching, and energy dissipation of longitudinal and transverse acoustic waves in diamond, demonstrating how mechanical energy thermalizes from picosecond to microsecond timescales. Bulk characterization techniques capable of resolving this level of structural detail have previously been available on millisecond time scales-orders of magnitude too slow to capture these fundamental phenomena in solid-state physics and geoscience. As such, the reported results provide broad insights into the interaction of acoustic waves with the structure of materials, and the availability of ultrafast time-resolved dark-field X-ray microscopy opens a vista of new opportunities for 3D imaging of materials dynamics on their intrinsic submicrosecond time scales.

9.
Br J Cancer ; 129(8): 1238-1250, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37626264

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition yields differential cellular responses in multiple tumor models due to redundancy in cell cycle. We investigate whether the differential requirements of CDKs in multiple cell lines function as determinant of response to pharmacological agents that target these kinases. METHODS: We utilized proteolysis-targeted chimeras (PROTACs) that are conjugated with palbociclib (Palbo-PROTAC) to degrade both CDK4 and CDK6. FN-POM was synthesized by chemically conjugating pomalidomide moiety with a multi-kinase inhibitor, FN-1501. Patient derived PDAC organoids and PDX model were utilized to investigate the effect of FN-POM in combination with palbociclib. RESULTS: Palbo-PROTAC mediates differential impact on cell cycle in different tumor models, indicating that the dependencies to CDK4 and 6 kinases are heterogenous. Cyclin E overexpression uncouples cell cycle from CDK4/6 and drives resistance to palbo-PROTAC. Elevated expression of P16INK4A antagonizes PROTAC-mediated degradation of CDK4 and 6. FN-POM degrades cyclin E and CDK2 and inhibits cell cycle progression in P16INK4A-high tumor models. Combination of palbociclib and FN-POM cooperatively inhibit tumor cell proliferation via RB activation. CONCLUSION: Resistance to CDK4/6 inhibition could be overcome by pharmacologically limiting Cyclin E/CDK2 complex and proves to be a potential therapeutic approach.

10.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37162905

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease for which new therapeutic interventions are needed. Here we assessed the cellular response to pharmacological KRAS inhibition, which target the central oncogenic factor in PDAC. In a panel of PDAC cell lines, pharmaceutical inhibition of KRAS G12D allele, with MRTX1133 yields variable efficacy in the suppression of cell growth and downstream gene expression programs in 2D culture. CRISPR screens identify new drivers for enhanced therapeutic response that regulate focal adhesion and signaling cascades, which were confirmed by gene specific knockdowns and combinatorial drug synergy. Interestingly, MRTX1133 is considerably more efficacious in the context of 3D cell cultures and in vivo PDAC patient-derived xenografts. In syngeneic models, KRAS G12D inhibition elicits potent tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicates that MRTX1133 activates interferon-γ signaling and induces antigen presentation that modulate the tumor microenvironment. Further investigation on the immunological response using single cell sequencing and multispectral imaging reveals that tumor regression is associated with suppression of neutrophils and influx of effector CD8 + T-cells. Thus, both tumor cell intrinsic and extrinsic events contribute to response and credential KRAS G12D inhibition as promising strategy for a large percentage of PDAC tumors.

11.
Cancer Discov ; 12(12): 2930-2953, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36108220

ABSTRACT

Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE: Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Epigenesis, Genetic , Neoplasm Recurrence, Local/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Cell Transformation, Neoplastic/genetics
12.
FASEB J ; 36(9): e22430, 2022 09.
Article in English | MEDLINE | ID: mdl-35920299

ABSTRACT

Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.


Subject(s)
Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Minichromosome Maintenance Complex Component 2 , Animals , DNA Replication , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Minichromosome Maintenance Complex Component 2/genetics , Mutation , Repressor Proteins/genetics , Transcription Factors/metabolism
14.
Oncogene ; 41(27): 3524-3538, 2022 07.
Article in English | MEDLINE | ID: mdl-35676324

ABSTRACT

The management of metastatic estrogen receptor (ER) positive HER2 negative breast cancer (ER+) has improved; however, therapeutic resistance and disease progression emerges in majority of cases. Using unbiased approaches, as expected PI3K and MTOR inhibitors emerge as potent inhibitors to delay proliferation of ER+ models harboring PIK3CA mutations. However, the cytostatic efficacy of these drugs is hindered due to marginal impact on the expression of cyclin D1. Different combination approaches involving the inhibition of ER pathway or cell cycle result in durable growth arrest via RB activation and subsequent inhibition of CDK2 activity. However, cell cycle alterations due to RB loss or ectopic CDK4/cyclin D1 activation yields resistance to these cytostatic combination treatments. To define means to counter resistance to targeted therapies imparted with RB loss; complementary drug screens were performed with RB-deleted isogenic cell lines. In this setting, RB loss renders ER+ breast cancer models more vulnerable to drugs that target DNA replication and mitosis. Pairwise combinations using these classes of drugs defines greater selectivity for RB deficiency. The combination of AURK and WEE1 inhibitors, yields synergistic cell death selectively in RB-deleted ER+ breast cancer cells via apoptosis and yields profound disease control in vivo. Through unbiased efforts the XIAP/CIAP inhibitor birinapant was identified as a novel RB-selective agent. Birinapant further enhances the cytotoxic effect of chemotherapies and targeted therapies used in the treatment of ER+ breast cancer models selectively in the RB-deficient setting. Using organoid culture and xenograft models, we demonstrate the highly selective use of birinapant based combinations for the treatment of RB-deficient tumors. Together, these data illustrate the critical role of RB-pathway in response to many agents used to treat ER+ breast cancer, whilst informing new therapeutic approaches that could be deployed against resistant disease.


Subject(s)
Breast Neoplasms , Cytostatic Agents , Retinoblastoma Protein , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin D1/genetics , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Cytostatic Agents/therapeutic use , Drug Resistance, Neoplasm , Female , Humans , Receptors, Estrogen/metabolism , Retinoblastoma Protein/deficiency , Retinoblastoma Protein/metabolism
15.
Oncologist ; 27(8): 646-654, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35666660

ABSTRACT

BACKGROUND: A study was initiated at Roswell Park Comprehensive Cancer Center to capture the real-world experience related to the use of CDK4/6 inhibitors (Ciclibs) for the treatment of metastatic hormone receptor-positive and HER2-negative breast cancer (HR+/HER2-). PATIENTS AND METHODS: A total of 222 patients were evaluated who received CDK4/6 inhibitors in the period from 2015 to 2021. Detailed clinical and demographic information was obtained on each patient and used to define clinical and demographic features associated with progression-free survival on CDK4/6 inhibitor-based therapies. RESULTS: In this real-world analysis, the majority of patients received palbociclib as the CDK4/6 inhibitor with letrozole or fulvestrant as the predominant endocrine therapies. The median progression-free survival (PFS) in the letrozole (27.6 months) and fulvestrant (17.2 months) groups were comparable to that observed in clinical trials. As expected, age at start of the treatment and menopausal status influenced endocrine therapy utilization but were not associated with PFS. Patients with recurrent disease had shorter PFS (P = .0024) than those presenting with de novo metastasis. The presence of visceral metastasis trended toward shorter PFS (P = .051). Similarly, prior endocrine therapy (P = .003) or chemotherapy (P = .036) was associated with shorter PFS. Body mass index was not associated with PFS or with dose interruption and/or modification. While the number of minorities in this analysis is limited (n = 26), these patients as a group had statistically shorter PFS on treatment (P = .002). CONCLUSIONS: The real-world progression-free survival with CDK4/6 inhibitors mimics that observed in the clinical trial. A number of clinical and demographic features were associated with PFS on CDK4/6 inhibitor-based therapy. Further studies are ongoing to validate these findings incorporating additional cancer centers.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Cyclin-Dependent Kinase 4 , Female , Fulvestrant/therapeutic use , Humans , Letrozole/therapeutic use , Receptor, ErbB-2/genetics , Receptor, ErbB-2/therapeutic use , Receptors, Estrogen , Receptors, Progesterone
16.
Oncogene ; 41(25): 3423-3432, 2022 06.
Article in English | MEDLINE | ID: mdl-35577980

ABSTRACT

Studies have shown that Nrf2E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2E79Q/+. Trp53/p16-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2+/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2E79Q allele. Trp53/p16-deficient mice also developed P-SCLC, where activation of the NRF2E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE+-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.


Subject(s)
Carcinoma, Neuroendocrine , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Carcinoma, Neuroendocrine/pathology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Homeodomain Proteins/metabolism , Humans , Incidence , Lung Neoplasms/pathology , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Small Cell Lung Carcinoma/pathology , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics
17.
Trends Cancer ; 8(9): 711-725, 2022 09.
Article in English | MEDLINE | ID: mdl-35599231

ABSTRACT

The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.


Subject(s)
CDC2-CDC28 Kinases , Neoplasms , Animals , Cell Cycle/genetics , Cell Division , Cyclin-Dependent Kinase Inhibitor p27 , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Humans , Mammals/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasms/genetics , Neoplasms/therapy , Protein Serine-Threonine Kinases , Tumor Cells, Cultured
18.
Cell Rep ; 38(9): 110448, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235778

ABSTRACT

Progression through G1/S phase of the cell cycle is coordinated by cyclin-dependent kinase (CDK) activities. Here, we find that the requirement for different CDK activities and cyclins in driving cancer cell cycles is highly heterogeneous. The differential gene requirements associate with tumor origin and genetic alterations. We define multiple mechanisms for G1/S progression in RB-proficient models, which are CDK4/6 independent and elicit resistance to FDA-approved inhibitors. Conversely, RB-deficient models are intrinsically CDK4/6 independent, but exhibit differential requirements for cyclin E. These dependencies for CDK and cyclins associate with gene expression programs that denote intrinsically different cell-cycle states. Mining therapeutic sensitivities shows that there are reciprocal vulnerabilities associated with RB1 or CCND1 expression versus CCNE1 or CDKN2A. Together, these findings illustrate the complex nature of cancer cell cycles and the relevance for precision therapeutic intervention.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Division , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinases/metabolism , Humans , Neoplasms/genetics
19.
Front Oncol ; 12: 966441, 2022.
Article in English | MEDLINE | ID: mdl-36741704

ABSTRACT

Anti-estrogens or aromatase inhibitors in combination with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are the current standard of care for estrogen receptor-positive (ER+) Her-2 negative metastatic breast cancer. Although these combination therapies prolong progression-free survival compared to endocrine therapy alone, the growth-arrested state of residual tumor cells is clearly transient. Tumor cells that escape what might be considered a dormant or quiescent state and regain proliferative capacity often acquire resistance to further therapies. Our studies are based upon the observation that breast tumor cells arrested by Fulvestrant + Palbociclib enter into states of both autophagy and senescence from which a subpopulation ultimately escapes, potentially contributing to recurrent disease. Autophagy inhibition utilizing pharmacologic or genetic approaches only moderately enhanced the response to Fulvestrant + Palbociclib in ER+ MCF-7 breast tumor cells, slightly delaying proliferative recovery. In contrast, the BET inhibitor/degrader, ARV-825, prolonged the growth arrested state in both p53 wild type MCF-7 cells and p53 mutant T-47D cells and significantly delayed proliferative recovery. In addition, ARV-825 added after the Fulvestrant + Palbociclib combination promoted apoptosis and demonstrated efficacy in resistant RB deficient cell lines. These studies indicate that administration of BET inhibitors/degraders, which are currently being investigated in multiple clinical trials, may potentially improve standard of care therapy in metastatic ER+ breast cancer patients and may further prolong progression-free survival.

20.
Clin Cancer Res ; 27(24): 6726-6736, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34645646

ABSTRACT

PURPOSE: We evaluated the antitumor efficacy of cetuximab in combination with pembrolizumab in patients with RAS wild-type (RASwt), metastatic colorectal adenocarcinoma (mCRC). PATIENTS AND METHODS: In this phase Ib/II study, cetuximab was combined with pembrolizumab in patients with RASwt mCRC with ≥ one prior line of therapy for advanced disease. We analyzed baseline on-treatment tumor tissues for changes in the tumor microenvironment (TME), using flow cytometry and multispectral immunofluorescence. RESULTS: Forty-four patients were evaluable for efficacy. The study was negative for the primary efficacy endpoint [overall response rate: 2.6%, 6-month progression-free survival (PFS): 31%; P = 0.52]. Median PFS was 4.1 months [95% confidence interval (CI): 3.9-5.5 months]. No increase in adverse effects was identified. We observed favorable immunomodulation with 47% increase in the number of intratumoral CTLs posttreatment (P = 0.035). These changes were more pronounced in patients with tumor shrinkage (P = 0.05). The TME was characterized by high numbers of TIM3+ and CTLA4+ cells; there were few activated OX40+ cells. PD-L1 expression was higher in pretreatment tumor cells from metastatic sites versus primary tumor samples (P < 0.05). Higher numbers of PD-L1+ tumor cells at baseline were associated with tumor shrinkage (P = 0.04). Analysis of immune populations in the blood demonstrated decreases in PD-1+ memory effector cells (P = 0.04) and granulocytic myeloid-derived suppressor cells (P = 0.03), with simultaneous increases in CD4+/CTLA4+ cells (P = 0.01). CONCLUSIONS: The combination of cetuximab and pembrolizumab is inactive in patients with RASwt mCRC, despite its partial local immunologic efficacy. Further development of immuno-oncology combinations with enhanced efficacy and/or targeting additional or alternative immune checkpoints merits investigation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cetuximab , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...