Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Skin Res Technol ; 28(2): 225-235, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34752663

ABSTRACT

BACKGROUND: While sunbathing of performing outdoor sport activities, sunscreens are important for protection of uncovered skin against ultraviolet (UV) radiation. However, perspiration negatively affects the performance of a sunscreen film by weakening its substantivity and uniformity through the activation of two mechanisms, namely sunscreen wash-off and sunscreen redistribution. MATERIAL AND METHODS: We used a perspiring skin simulator to investigate the effect of sunscreen formulation on its efficiency upon sweating. Specifically, we modified the sunscreen formulation by incorporating a hydrophobic film former and adding water-absorbing particles. Sunscreen performance before and after perspiration is assessed by in vitro sun protection factor measurements, direct detection of changes in the sunscreen distribution using UV reflectance imaging, and by coherent anti-Stokes Raman scattering (CARS) microscopy for microscopic characterization of the UV filter relocation. RESULTS: The results show that incorporating a hydrophobic film former can decrease sunscreen wash-off due to sweating, while an excessive amount of film former might negatively affect the sunscreen distribution. The addition of water-absorbing particles, on the other hand, had either a negative or positive impact on the sunscreen substantivity, depending on the particle properties. While the addition of large water-absorbing particles appeared to increase sunscreen redistribution, smaller particles that could form a gel-like structure upon contact with water, appeared to change sunscreen wetting and sweat droplet spreading, thereby decreasing sunscreen wash-off and sunscreen redistribution. CONCLUSIONS: We find that using a combination of hydrophobic film formers, which increase water resistance, and small water-absorbing particles, which change the wetting behavior, can make sunscreen formulations more sweat-resistant and less runny.


Subject(s)
Sunscreening Agents , Sweating , Humans , Skin , Sunscreening Agents/pharmacology , Sweat , Ultraviolet Rays/adverse effects
2.
J Colloid Interface Sci ; 479: 207-220, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27388135

ABSTRACT

In the development of transdermal and topical products it is important to understand how formulation ingredients interact with the molecular components of the upper layer of the skin, the stratum corneum (SC), and thereby influence its macroscopic barrier properties. The aim here was to investigate the effect of two commonly used excipients, transcutol and dexpanthenol, on the molecular as well as the macroscopic properties of the skin membrane. Polarization transfer solid-state NMR methods were combined with steady-state flux and impedance spectroscopy measurements to investigate how these common excipients influence the molecular components of SC and its barrier function at strictly controlled hydration conditions in vitro with excised porcine skin. The NMR results provide completely new molecular insight into how transcutol and dexpanthenol affect specific molecular segments of both SC lipids and proteins. The presence of transcutol or dexpanthenol in the formulation at fixed water activity results in increased effective skin permeability of the model drug metronidazole. Finally, impedance spectroscopy data show clear changes of the effective skin capacitance after treatment with transcutol or dexpanthenol. Based on the complementary data, we are able to draw direct links between effects on the molecular properties and on the macroscopic barrier function of the skin barrier under treatment with formulations containing transcutol or dexpanthenol.


Subject(s)
Electric Impedance , Ethylene Glycols/pharmacology , Galvanic Skin Response/drug effects , Pantothenic Acid/analogs & derivatives , Skin/drug effects , Animals , Ethylene Glycols/chemistry , Pantothenic Acid/chemistry , Pantothenic Acid/pharmacology , Permeability/drug effects , Skin/metabolism , Swine
3.
Eur J Pharm Biopharm ; 81(3): 532-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22538098

ABSTRACT

The D-vitamin analogue calcipotriol is commonly used for topical treatment of psoriasis, but skin penetration is required for calcipotriol to reach its pharmacological target: the keratinocytes in the lower epidermis. Liposomes can enhance the delivery of drugs into the skin, but a major challenge for the development of dosage forms containing liposomes is to maintain the colloidal stability in the formulation. The purpose of this study was to investigate the effect of stabilising liposomes with the lipopolymer poly(ethylene glycol)-distearoylphosphoethanolamine (PEG-DSPE) on the physicochemical properties of the liposomes and the ability to deliver membrane-intercalated calcipotriol into the skin. Inclusion of 0.5, l and 5 mol% PEG-DSPE in the membrane enhanced the colloidal stability of the liposomes without compromising the delivery of calcipotriol from the vehicle into excised pig skin. Calcipotriol-loaded liposomes with 1 mol% PEG-DSPE did even provide for a significantly increased deposition of calcipotriol into the stratum corneum. The size of the liposomes affected the penetration of calcipotriol into the stratum corneum since small unilamellar vesicles enhanced calcipotriol penetration as compared to large multilamellar vesicles, indicating that the liposomes to some extent migrate as intact vesicles into the stratum corneum. However, calcipotriol penetrated the skin better than the lipid component of the liposomes, suggesting that at least a fraction of the drug is released from the liposomes during skin migration. In conclusion, PEGylation is therefore a promising approach for stabilising calcipotriol-containing liposomal dispersions without compromising their favourable skin accumulation properties.


Subject(s)
Calcitriol/analogs & derivatives , Dermatologic Agents/pharmacokinetics , Drug Delivery Systems , Skin Absorption , Administration, Cutaneous , Animals , Calcitriol/administration & dosage , Calcitriol/pharmacokinetics , Dermatologic Agents/administration & dosage , Drug Carriers/chemistry , Drug Stability , Liposomes , Particle Size , Permeability , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Skin/metabolism , Swine
4.
Int J Pharm ; 416(2): 478-85, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21419203

ABSTRACT

Many dermal diseases like psoriasis are characterized by major changes in skin barrier function, which challenge the reproducible delivery of drugs into specific layers of diseased skin. The purpose of this study was to elucidate how liposomal bilayer fluidity and barrier integrity affected the delivery of liposome-associated calcipotriol to the skin. Calcipotriol-containing gel state and liquid state dipalmitoylphosphatidyl-choline:dilauroylphosphatidylcholine liposomes were prepared by extrusion. Using Langmuir monolayers, calcipotriol was shown to affect the packing of the lipid membrane. The penetration of radioactively labeled lipid and calcipotriol into pig skin was examined using the Franz diffusion cell model, and tape stripping was applied to impose an impaired barrier. Distorting the skin barrier resulted in an enhanced penetration of lipid from both gel and liquid state liposomes. In addition, increased penetration of lipid from liquid state liposomes was observed compared to gel state liposomes into barrier-impaired skin. For barrier-impaired skin, an elevated calcipotriol-to-lipid ratio was found in the receptor fluid for both liposome compositions indicating that calcipotriol is released from the vesicles. This suggests that the liposome-mediated delivery of calcipotriol to the epidermis of diseased skin is affected by the fluidity of the liposomal membrane.


Subject(s)
Calcitriol/analogs & derivatives , Dermatologic Agents/administration & dosage , Drug Delivery Systems , Skin Absorption , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Animals , Calcitriol/administration & dosage , Calcitriol/pharmacokinetics , Dermatologic Agents/pharmacokinetics , Gels , Liposomes , Membrane Fluidity , Permeability , Phosphatidylcholines/chemistry , Swine
5.
DNA Repair (Amst) ; 8(6): 682-9, 2009 Jun 04.
Article in English | MEDLINE | ID: mdl-19376751

ABSTRACT

DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M.T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import, co-import of proteins, and alternative transport pathways. Most excision repair proteins appear to contain classical NLS sequences directing their nuclear import, however, additional import mechanisms add alternative regulatory levels to protein import, indirectly affecting protein function. Protein co-import appears to be a mechanism employed by the composite repair systems NER and MMR to enhance and regulate nuclear accumulation of repair proteins thereby ensuring faithful DNA repair.


Subject(s)
Cell Nucleus/metabolism , DNA Repair , DNA/genetics , Active Transport, Cell Nucleus , Cell Nucleus/genetics , Humans , Protein Transport
6.
Nucleic Acids Res ; 35(8): 2609-19, 2007.
Article in English | MEDLINE | ID: mdl-17426132

ABSTRACT

Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1 interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin beta/alpha1,3,7 whereas hMSH2 specifically recognizes importin beta/alpha3. Taken together, we infer that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity.


Subject(s)
Cell Nucleus/enzymology , DNA Repair Enzymes/analysis , DNA Repair Enzymes/metabolism , Exodeoxyribonucleases/analysis , Exodeoxyribonucleases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , DNA Mismatch Repair , DNA Repair Enzymes/genetics , Exodeoxyribonucleases/genetics , Humans , Karyopherins/metabolism , Mice , MutL Protein Homolog 1 , MutS Homolog 2 Protein/metabolism , Nuclear Localization Signals , Nuclear Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...