Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 477(19): 3673-3693, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32897311

ABSTRACT

In yeast and animal cells, mitochondrial disturbances resulting from imbalances in the respiratory chain require malate dehydrogenase (MDH) activities for re-directing fluxes of reducing equivalents. In plants, in addition to mitochondria, plastids use malate valves to counterbalance and maintain redox-homeostasis. Arabidopsis expresses three cytosolic MDH isoforms, namely cyMDH1, cyMDH2, and cyMDH3, the latter possessing an N-terminal extension carrying a unique cysteine residue C2. In this study, redox-effects on activity and structure of all three cyMDH isoforms were analyzed in vitro. cyMDH1 and cyMDH2 were reversibly inactivated by diamide treatment, accompanied by dimerization via disulfide-bridge formation. In contrast, cyMDH3 forms dimers and higher oligomers upon oxidation, but its low specific activity is redox-independent. In the presence of glutathione, cyMDH1 and cyMDH2 are protected from dimerization and inactivation. In contrast, cyMDH3 still dimerizes but does not form oligomers any longer. From analyses of single and double cysteine mutants and structural modeling of cyMDH3, we conclude that the presence of C2 and C336 allows for multiple cross-links in the higher molecular mass complexes comprising disulfides within the dimer as well as between monomers of two different dimers. Furthermore, nuclear localization of cyMDH isoforms was significantly increased under oxidizing conditions in isolated Arabidopsis protoplasts, in particular of isoform cyMDH3. The unique cyMDH3 C2-C2-linked dimer is, therefore, a good candidate as a redox-sensor taking over moonlighting functions upon disturbances of energy metabolism, as shown previously for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) where oxidative modification of the sensitive catalytic cysteine residues induces nuclear translocation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Energy Metabolism , Malate Dehydrogenase/metabolism , Protein Multimerization , Signal Transduction , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Malate Dehydrogenase/genetics , Mutation, Missense , Oxidation-Reduction
2.
Plant Physiol ; 184(2): 676-692, 2020 10.
Article in English | MEDLINE | ID: mdl-32826321

ABSTRACT

Heat stress induces misfolding and aggregation of proteins unless they are guarded by chaperone systems. Here, we examined the function of the glutaredoxin GRXS17, a member of thiol reductase families in the model plant Arabidopsis (Arabidopsis thaliana). GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin domain and three CGFS active-site motif-containing GRX domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione-dependent manner. As an Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, GRXS17 presented both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induced loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active-site cysteines in the corresponding thioredoxin domains. This oxidation led to a shift of GRXS17 to a high-molecular-weight complex and thus activated its holdase activity in vitro. Moreover, GRXS17 was specifically involved in plant tolerance to moderate high temperature and protected root meristematic cells from heat-induced cell death. Finally, GRXS17 interacted with a different set of proteins upon heat stress, possibly protecting them from heat injuries. Therefore, we propose that the Fe-S cluster enzyme GRXS17 is an essential guard that protects proteins against moderate heat stress, likely through a redox-dependent chaperone activity. We reveal the mechanism of an Fe-S cluster-dependent activity shift that converts the holoenzyme GRXS17 into a holdase, thereby preventing damage caused by heat stress.


Subject(s)
Arabidopsis Proteins/metabolism , Glutaredoxins/metabolism , Heat-Shock Response , Oxidative Stress , Thermotolerance , Arabidopsis , Arabidopsis Proteins/genetics , Glutaredoxins/genetics , Polymerization
3.
PeerJ ; 8: e9226, 2020.
Article in English | MEDLINE | ID: mdl-32587795

ABSTRACT

In the vineyards of Rhineland-Palatinate (Germany), two different types of Shepherd's Purse (Capsella bursa-pastoris) coexist: (1) the common type called 'wild type', and (2) the decandric type called Capsella apetala or 'Spe' with four stamens in place of the four petals. In this study, we compare the anatomical and physiological characters of rosette leaves of the respective types. Progeny of individual plants was cultivated in growth chambers under low- and high-light conditions. Under low-light conditions, the stomata densities of the adaxial and abaxial epidermis did not differ between the two types. When grown under high-light conditions, wild type and Spe, both exhibited increased stomata densities compared to low-light conditions, but Spe to a lesser extent than the wild type. The maximal photosynthetic capacity of Spe was lower in both, low-light and high-light conditions compared to wild-type plants. Under all CO2 concentrations, Spe seemed to be less productive. The less effective CO2 assimilation of the Spe mutant C. apetala was accompanied by later flowering. This fact prolonged the vegetative phase of Spe by about two weeks and was sufficient for the maintenance of both populations stably over years.

4.
Microorganisms ; 8(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283834

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme of the oxidative part of the pentose phosphate pathway and serves as the major source of NADPH for metabolic reactions and oxidative stress response in pro- and eukaryotic cells. We here report on a strain of the model yeast Saccharomyces cerevisiae which lacks the G6PD-encoding ZWF1 gene and displays distinct growth retardation on rich and synthetic media, as well as a strongly reduced chronological lifespan. This strain was used as a recipient to introduce plasmid-encoded heterologous G6PD genes, synthesized in the yeast codon usage and expressed under the control of the native PFK2 promotor. Complementation of the hypersensitivity of the zwf1 mutant towards hydrogen peroxide to different degrees was observed for the genes from humans (HsG6PD1), the milk yeast Kluyveromyces lactis (KlZWF1), the bacteria Escherichia coli (EcZWF1) and Leuconostoc mesenteroides (LmZWF1), as well as the genes encoding three different plant G6PD isoforms from Arabidopsis thaliana (AtG6PD1, AtG6PD5, AtG6PD6). The plastidic AtG6PD1 isoform retained its redox-sensitive activity when produced in the yeast as a cytosolic enzyme, demonstrating the suitability of this host for determination of its physiological properties. Mutations precluding the formation of a disulfide bridge in AtG6PD1 abolished its redox-sensitivity but improved its capacity to complement the yeast zwf1 deletion. Given the importance of G6PD in human diseases and plant growth, this heterologous expression system offers a broad range of applications.

5.
BMC Plant Biol ; 18(1): 184, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30189844

ABSTRACT

BACKGROUND: Plant cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GapC) displays redox-dependent changes in its subcellular localizations and activity. Apart from its fundamental role in glycolysis, it also exhibits moonlighting properties. Since the exceptional redox-sensitivity of GapC has been suggested to play a crucial role in its various functions, we here studied its redox-dependent subcellular localization and the influence of the redox-state on GapC protein interactions. RESULTS: In mesophyll protoplasts from Arabidopsis thaliana, colocalization of GapC with mitochondria was more pronounced under reducing conditions than upon oxidative stress. In accordance, reduced GapC showed an increased affinity to the mitochondrial voltage-dependent anion-selective channel (VDAC) compared to the oxidized one. On the other hand, nuclear localization of GapC was increased under oxidizing conditions. The essential role of the catalytic cysteine for nuclear translocation was shown by using the corresponding cysteine mutants. Furthermore, interaction of GapC with the thioredoxin Trx-h3 as a candidate to revert the redox-modifications, occurred in the nucleus of oxidized protoplasts. In a yeast complementation assay, we could demonstrate that the plant-specific non-phosphorylating glyceraldehyde 3-P dehydrogenase (GapN) can substitute for glucose 6-P dehydrogenase to generate NADPH for re-reduction of the Trx system and ROS defense. CONCLUSIONS: The preferred association of reduced, glycolytically active GapC with VDAC suggests a substrate-channeling metabolon at the mitochondrial surface for efficient energy generation. Increased occurrence of oxidized GapC in the nucleus points to a function in signal transduction and gene expression. Furthermore, the interaction of GapC with Trx-h3 in the nucleus indicates reversal of the oxidative cysteine modification after re-establishment of cellular homeostasis. Both, energy metabolism and signal transfer for long-term adjustment and protection from redox-imbalances are mediated by the various functions of GapC. The molecular properties of GapC as a redox-switch are key to its multiple roles in orchestrating energy metabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytosol/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cysteine/metabolism , Energy Metabolism , Genetic Complementation Test , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Mitochondria/metabolism , Mutation , Oxidation-Reduction , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Thioredoxins/metabolism , Voltage-Dependent Anion Channels/metabolism
6.
PLoS One ; 13(8): e0202255, 2018.
Article in English | MEDLINE | ID: mdl-30102718

ABSTRACT

In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.


Subject(s)
Altitude , Introduced Species , Pteridium/growth & development , Setaria Plant/growth & development , Agriculture , Biomass , Coumaric Acids , Ecuador , Photosynthesis , Plant Weeds , Pteridium/chemistry , Pteridium/radiation effects , Setaria Plant/chemistry , Setaria Plant/radiation effects , Temperature , Tyramine/analogs & derivatives , Ultraviolet Rays
7.
Trends Plant Sci ; 23(9): 769-782, 2018 09.
Article in English | MEDLINE | ID: mdl-30149854

ABSTRACT

Oxygenic photosynthesis gave rise to a regulatory mechanism based on reversible redox-modifications of enzymes. In chloroplasts, such on-off switches separate metabolic pathways to avoid futile cycles. During illumination, the redox interconversions allow for rapidly and finely adjusting activation states of redox-regulated enzymes. Noncovalent effects by metabolites binding to these enzymes, here addressed as 'small molecules', affect the rates of reduction and oxidation. The chloroplast enzymes provide an example for a versatile regulatory principle where small molecules govern thiol switches to integrate redox state and metabolism for an appropriate response to environmental challenges. In general, this principle can be transferred to reactive thiols involved in redox signaling, oxidative stress responses, and in disease of all organisms.


Subject(s)
Chloroplasts/metabolism , Oxygen/metabolism , Signal Transduction , Sulfhydryl Compounds/metabolism , Oxidation-Reduction , Oxidative Stress , Photosynthesis
8.
Plant Physiol ; 167(4): 1643-58, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25699589

ABSTRACT

Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker's yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , CCAAT-Binding Factor/metabolism , Gene Expression Regulation, Plant , Glutaredoxins/metabolism , Meristem/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , CCAAT-Binding Factor/genetics , Genes, Reporter , Glutaredoxins/genetics , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Meristem/growth & development , Meristem/physiology , Meristem/radiation effects , Models, Biological , Mutation , Oxidation-Reduction , Phenotype , Photoperiod , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology , Plant Shoots/radiation effects , Plants, Genetically Modified , Recombinant Proteins , Signal Transduction
9.
Biol Chem ; 396(5): 523-37, 2015 May.
Article in English | MEDLINE | ID: mdl-25581756

ABSTRACT

Cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH, E.C. 1.2.1.12) is present in all organisms and catalyzes the oxidation of triose phosphate during glycolysis. GAPDH is one of the most prominent cellular targets of oxidative modifications when reactive oxygen and nitrogen species are formed during metabolism and under stress conditions. GAPDH harbors a strictly conserved catalytic cysteine, which is susceptible to a variety of thiol modifications, including S-sulfenylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. Upon reversible oxidative thiol modification of GAPDH, glycolysis is inhibited leading to a diversion of metabolic flux through the pentose-phosphate cycle to increase NADPH production. Furthermore, oxidized GAPDH may adopt new functions in different cellular compartments including the nucleus, as well as in new microcompartments associated with the cytoskeleton, mitochondria and plasma membrane. This review focuses on the recently discovered mechanism underlying the eminent reactivity between GAPDH and hydrogen peroxide and the subsequent redox-dependent moonlighting functions discriminating between the induction either of adaptive responses and adjustment of metabolism or of cell death in yeast, plants, and mammals. In light of the summarized results, cytosolic GAPDH might function as a sensor for redox signals and an information hub to transduce these signals for appropriate responses.


Subject(s)
Cytosol/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...