Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 15(8)2015 Dec.
Article in English | MEDLINE | ID: mdl-26392044

ABSTRACT

Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74-84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered a less leaky Cu(2+)-inducible promoter based on CUP1. The basal expression level of the new promoter was approximately 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu(2+)-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms.


Subject(s)
Artificial Gene Fusion , Gene Expression Profiling/methods , Genetics, Microbial/methods , Green Fluorescent Proteins/analysis , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Genomic Instability , Green Fluorescent Proteins/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics
2.
Appl Microbiol Biotechnol ; 98(8): 3517-27, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24413918

ABSTRACT

Malic acid is a C4 dicarboxylic acid that is currently mainly used in the food and beverages industry as an acidulant. Because of the versatility of the group of C4 dicarboxylic acids, the chemical industry has a growing interest in this chemical compound. As malic acid will be considered as a bulk chemical, microbial production requires organisms that sustain high rates, yields, and titers. Aspergillus oryzae is mainly known as an industrial enzyme producer, but it was also shown that it has a very competitive natural production capacity for malic acid. Recently, an engineered A. oryzae strain, 2103a-68, was presented which overexpressed pyruvate carboxylase, malate dehydrogenase, and a malic acid transporter. In this work, we report a detailed characterization of this strain including detailed rates and yields under malic acid production conditions. Furthermore, transcript levels of the genes of interest and corresponding enzyme activities were measured. On glucose as carbon source, 2103a-68 was able to secrete malic acid at a maximum specific production rate during stationary phase of 1.87 mmol (g dry weight (DW))⁻¹ h⁻¹ and with a yield of 1.49 mol mol⁻¹. Intracellular fluxes were obtained using ¹³C flux analysis during exponential growth, supporting the success of the metabolic engineering strategy of increasing flux through the reductive cytosolic tricarboxylic acid (rTCA) branch. Additional cultivations using xylose and a glucose/xylose mixture demonstrated that A. oryzae is able to efficiently metabolize pentoses and hexoses to produce malic acid at high titers, rates, and yields.


Subject(s)
Aspergillus oryzae/growth & development , Aspergillus oryzae/metabolism , Malates/metabolism , Metabolic Networks and Pathways/genetics , Aspergillus oryzae/genetics , Carbon Isotopes/metabolism , Gene Expression Profiling , Isotope Labeling , Metabolic Engineering , Metabolic Flux Analysis
3.
Appl Environ Microbiol ; 79(19): 6050-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23892740

ABSTRACT

Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter(-1), using peptone than the one of 22.27 ± 0.46 g liter(-1) obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes.


Subject(s)
Aspergillus oryzae/metabolism , Malates/metabolism , Nitrogen/metabolism , Ammonium Compounds/metabolism , Aspergillus oryzae/genetics , Gene Expression Profiling , Metabolic Networks and Pathways/genetics
4.
Biotechnol J ; 7(9): 1147-55, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22890866

ABSTRACT

Aspergilli are widely used as cell factories for the production of food ingredients, enzymes and antibiotics. Traditionally, improvement of these cell factories has been done using classical methods, that is, random mutagenesis and screening; however, advances in methods for performing directed genetic modifications has enabled the use of metabolic engineering strategies. Genome sequencing of Aspergilli was originally trailing behind developments in the field of bacteria and yeasts, but with the recent availability of genome sequences for several industrially relevant Aspergilli, it has become possible to implement systems biology tools to advance metabolic engineering. These tools include genome-wide transcription analysis and genome-scale metabolic models. Herein, we review achievements in the field and highlight the impact of Aspergillus systems biology on industrial biotechnology.


Subject(s)
Aspergillus/genetics , Aspergillus/metabolism , Industrial Microbiology/methods , Systems Biology/methods , Aspergillus/growth & development , Genome, Fungal , Genomics , Metabolic Engineering , Models, Biological
5.
Metab Eng ; 14(2): 91-103, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22330799

ABSTRACT

Microbial cells engineered for efficient production of plant sesquiterpenes may allow for sustainable and scalable production of these compounds that can be used as e.g. perfumes and pharmaceuticals. Here, for the first time a Saccharomyces cerevisiae strain capable of producing high levels of α-santalene, the precursor of a commercially interesting compound, was constructed through a rationally designed metabolic engineering approach. Optimal sesquiterpene production was obtained by modulating the expression of one of the key metabolic steps of the mevalonate (MVA) pathway, squalene synthase (Erg9). To couple ERG9 expression to glucose concentration its promoter was replaced by the HXT1 promoter. In a second approach, the HXT2 promoter was used to express an ERG9 antisense construct. Using the HXT1 promoter to control ERG9 expression, it was possible to divert the carbon flux from sterol synthesis towards α-santalene improving the productivity by 3.4 fold. Combining this approach together with the overexpression of a truncated form of 3-hydroxyl-3-methyl-glutaryl-CoA reductase (HMGR) and deletion of lipid phosphate phosphatase encoded by LPP1 led to a strain with a productivity of 0.18mg/gDCWh. The titer was further increased by deleting DPP1 encoding a second FPP consuming pyrophosphate phosphatase yielding a final productivity and titer, respectively, of 0.21mg/gDCWh and 92mg/l of α-santalene.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase/biosynthesis , Hydroxymethylglutaryl CoA Reductases/biosynthesis , Metabolic Engineering , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/enzymology , Sesquiterpenes/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Gene Deletion , Glucose Transport Proteins, Facilitative/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Mevalonic Acid/metabolism , Phosphatidate Phosphatase/genetics , Plants/chemistry , Plants/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...