Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurgery ; 87(6): 1277-1288, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32717033

ABSTRACT

BACKGROUND: Loss of control (LOC) is a pervasive feature of binge eating, which contributes significantly to the growing epidemic of obesity; approximately 80 million US adults are obese. Brain-responsive neurostimulation guided by the delta band was previously found to block binge-eating behavior in mice. Following novel preclinical work and a human case study demonstrating an association between the delta band and reward anticipation, the US Food and Drug Administration approved an Investigational Device Exemption for a first-in-human study. OBJECTIVE: To assess feasibility, safety, and nonfutility of brain-responsive neurostimulation for LOC eating in treatment-refractory obesity. METHODS: This is a single-site, early feasibility study with a randomized, single-blinded, staggered-onset design. Six subjects will undergo bilateral brain-responsive neurostimulation of the nucleus accumbens for LOC eating using the RNS® System (NeuroPace Inc). Eligible participants must have treatment-refractory obesity with body mass index ≥ 45 kg/m2. Electrophysiological signals of LOC will be characterized using real-time recording capabilities coupled with synchronized video monitoring. Effects on other eating disorder pathology, mood, neuropsychological profile, metabolic syndrome, and nutrition will also be assessed. EXPECTED OUTCOMES: Safety/feasibility of brain-responsive neurostimulation of the nucleus accumbens will be examined. The primary success criterion is a decrease of ≥1 LOC eating episode/week based on a 28-d average in ≥50% of subjects after 6 mo of responsive neurostimulation. DISCUSSION: This study is the first to use brain-responsive neurostimulation for obesity; this approach represents a paradigm shift for intractable mental health disorders.


Subject(s)
Brain , Deep Brain Stimulation , Animals , Feasibility Studies , Mice , Nucleus Accumbens , Obesity/therapy
2.
Transl Psychiatry ; 8(1): 264, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504860

ABSTRACT

Major depressive disorder (MDD) is characterized by the altered integration of reward histories and reduced responding of the striatum. We have posited that this reduced striatal activation in MDD is due to tonically decreased stimulation of striatal dopamine synapses which results in decremented propagation of information along the cortico-striatal-pallido-thalamic (CSPT) spiral. In the present investigation, we tested predictions of this formulation by conducting concurrent functional magnetic resonance imaging (fMRI) and 11C-raclopride positron emission tomography (PET) in depressed and control (CTL) participants. We scanned 16 depressed and 14 CTL participants with simultaneous fMRI and 11C-raclopride PET. We estimated raclopride binding potential (BPND), voxel-wise, and compared MDD and CTL samples with respect to BPND in the striatum. Using striatal regions that showed significant between-group BPND differences as seeds, we conducted whole-brain functional connectivity analysis using the fMRI data and identified brain regions in each group in which connectivity with striatal seed regions scaled linearly with BPND from these regions. We observed increased BPND in the ventral striatum, bilaterally, and in the right dorsal striatum in the depressed participants. Further, we found that as BPND increased in both the left ventral striatum and right dorsal striatum in MDD, connectivity with the cortical targets of these regions (default-mode network and salience network, respectively) decreased. Deficits in stimulation of striatal dopamine receptors in MDD could account in part for the failure of transfer of information up the CSPT circuit in the pathophysiology of this disorder.


Subject(s)
Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Dopamine/metabolism , Adult , Brain Mapping , Corpus Striatum/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Neural Pathways/physiopathology , Positron-Emission Tomography , Raclopride
SELECTION OF CITATIONS
SEARCH DETAIL
...