Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(23): e0124122, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36374093

ABSTRACT

Plant growth-promoting (PGP) bacteria are important to the development of sustainable agricultural systems. PGP microbes that fix atmospheric nitrogen (diazotrophs) could minimize the application of industrially derived fertilizers and function as a biofertilizer. The bacterium Gluconacetobacter diazotrophicus is a nitrogen-fixing PGP microbe originally discovered in association with sugarcane plants, where it functions as an endophyte. It also forms endophyte associations with a range of other agriculturally relevant crop plants. G. diazotrophicus requires microaerobic conditions for diazotrophic growth. We generated a transposon library for G. diazotrophicus and cultured the library under various growth conditions and culture medium compositions to measure fitness defects associated with individual transposon inserts (transposon insertion sequencing [Tn-seq]). Using this library, we probed more than 3,200 genes and ascertained the importance of various genes for diazotrophic growth of this microaerobic endophyte. We also identified a set of essential genes. IMPORTANCE Our results demonstrate a succinct set of genes involved in diazotrophic growth for G. diazotrophicus, with a lower degree of redundancy than what is found in other model diazotrophs. The results will serve as a valuable resource for those interested in biological nitrogen fixation and will establish a baseline data set for plant free growth, which could complement future studies related to the endophyte relationship.


Subject(s)
Gluconacetobacter , Symbiosis , Gluconacetobacter/genetics , Nitrogen Fixation/genetics , Nitrogen
2.
J Bacteriol ; 203(24): e0040421, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34570624

ABSTRACT

Azotobacter vinelandii is a nitrogen-fixing free-living soil microbe that has been studied for decades in relation to biological nitrogen fixation (BNF). It is highly amenable to genetic manipulation, helping to unravel the intricate importance of different proteins involved in the process of BNF, including the biosynthesis of cofactors that are essential to assembling the complex metal cofactors that catalyze the difficult reaction of nitrogen fixation. Additionally, A. vinelandii accomplishes this feat while growing as an obligate aerobe, differentiating it from many of the nitrogen-fixing bacteria that are associated with plant roots. The ability to function in the presence of oxygen makes A. vinelandii suitable for application in various potential biotechnological schemes. In this study, we employed transposon sequencing (Tn-seq) to measure the fitness defects associated with disruptions of various genes under nitrogen-fixing dependent growth, versus growth with extraneously provided urea as a nitrogen source. The results allowed us to probe the importance of more than 3,800 genes, revealing that many genes previously believed to be important, can be successfully disrupted without impacting cellular fitness. IMPORTANCE These results provide insights into the functional redundancy in A. vinelandii, while also providing a direct measure of fitness for specific genes associated with the process of BNF. These results will serve as a valuable reference tool in future studies to uncover the mechanisms that govern this process.


Subject(s)
Azotobacter vinelandii/physiology , Bacterial Proteins/metabolism , Genetic Fitness , Nitrogen/metabolism , Urea/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/growth & development , Bacterial Proteins/genetics , Base Sequence , DNA Transposable Elements , Gene Expression Regulation, Bacterial , Molybdenum
3.
FEMS Microbiol Lett ; 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33301558

ABSTRACT

The biosynthesis of lipid-based biofuels is an important aspect of developing sustainable alternatives to conventional oils derived from fossil fuel reserves. Many biosynthetic approaches to biodiesel fuels and oils involve fatty acid derivatives as a precursor, and thioesterases have been employed in various strategies to increase fatty acid pools. Thioesterases liberate fatty acids from fatty acyl-coenzyme A or fatty acyl-acyl carrier protein substrates. The role played by thioesterases has not been extensively studied in model bacteria that accumulate elevated levels of biological oils based on fatty acid precursors. In this report, two primary thioesterases from the wax ester accumulating bacterium Marinobacter aquaeolei VT8 were heterologously expressed, isolated and characterized. These genes were further analyzed at the transcriptional level in the native bacterium during wax ester accumulation, and their genes were disrupted to determine the effect these changes had on wax ester levels. Combined, these results indicate that these two thioesterases do not play an integral role in wax ester accumulation in this natural lipid-accumulating model bacterium.

4.
Microb Cell Fact ; 19(1): 107, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429912

ABSTRACT

BACKGROUND: The obligate aerobe Azotobacter vinelandii is a model organism for the study of biological nitrogen fixation (BNF). This bacterium regulates the process of BNF through the two component NifL and NifA system, where NifA acts as an activator, while NifL acts as an anti-activator based on various metabolic signals within the cell. Disruption of the nifL component in the nifLA operon in a precise manner results in a deregulated phenotype that produces levels of ammonium that far surpass the requirements within the cell, and results in the release of up to 30 mM of ammonium into the growth medium. While many studies have probed the factors affecting growth of A. vinelandii, the features important to maximizing this high-ammonium-releasing phenotype have not been fully investigated. RESULTS: In this work, we report the effect of temperature, medium composition, and oxygen requirements on sustaining and maximizing elevated levels of ammonium production from a nitrogenase deregulated strain. We further investigated several pathways, including ammonium uptake through the transporter AmtB, which could limit yields through energy loss or futile recycling steps. Following optimization, we compared sugar consumption and ammonium production, to attain correlations and energy requirements to drive this process in vivo. Ammonium yields indicate that between 5 and 8% of cellular protein is fully active nitrogenase MoFe protein (NifDK) under these conditions. CONCLUSIONS: These findings provide important process optimization parameters, and illustrate that further improvements to this phenotype can be accomplished by eliminating futile cycles.


Subject(s)
Ammonium Compounds/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Gene Expression Regulation, Bacterial , Nitrogen Fixation/genetics , Ammonium Compounds/analysis , Azotobacter vinelandii/enzymology , Culture Media/chemistry , Genes, Bacterial , Nitrogen Fixation/physiology , Nitrogenase/metabolism , Oxygen/metabolism , Temperature , Transcription Factors/genetics
5.
Appl Microbiol Biotechnol ; 102(23): 10315-10325, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30250977

ABSTRACT

Biological nitrogen fixation (BNF) through the enzyme nitrogenase is performed by a unique class of organisms known as diazotrophs. One interesting facet of BNF is that it produces molecular hydrogen (H2) as a requisite by-product. In the absence of N2 substrate, or under conditions that limit access of N2 to the enzyme through modifications of amino acids near the active site, nitrogenase activity can be redirected toward a role as a dedicated hydrogenase. In free-living diazotrophs, nitrogenases are tightly regulated to minimize BNF to meet only the growth requirements of the cell, and are often accompanied by uptake hydrogenases that oxidize the H2 by-product to recover the electrons from this product. The wild-type strain of Azotobacter vinelandii performs all of the tasks described above to minimize losses of H2 while also growing as an obligate aerobe. Individual alterations to A. vinelandii have been demonstrated that disrupt key aspects of the N2 reduction cycle, thereby diverting resources and energy toward the production of H2. In this work, we have combined three approaches to override the primary regulation of BNF and redirect metabolism to drive biological H2 production by nitrogenase in A. vinelandii. The resulting H2-producing strain was further utilized as a surrogate to study secondary, post-transcriptional regulation of BNF by several key nitrogen-containing metabolites. The improvement in yields of H2 that were achieved through various combinations of these three approaches was compared and is presented along with the insights into inhibition of BNF by several nitrogen compounds that are common in various waste streams. The findings indicate that both ammonium and nitrite hinder BNF through this secondary inhibition, but urea and nitrate do not. These results provide essential details to inform future biosynthetic approaches to yield nitrogen products that do not inadvertently inhibit BNF.


Subject(s)
Azotobacter vinelandii/enzymology , Hydrogen/metabolism , Nitrogen Compounds/metabolism , Nitrogen Fixation , Ammonium Compounds/metabolism , Catalytic Domain , Electrons , Hydrogen-Ion Concentration , Industrial Microbiology , Nitrates/metabolism , Nitrites/metabolism , Nitrogenase , Oxidoreductases/genetics , Oxidoreductases/metabolism , Urea/metabolism
6.
Appl Environ Microbiol ; 83(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28802272

ABSTRACT

Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium.IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain.


Subject(s)
Ammonium Compounds/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Nitrogen Fixation , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/growth & development , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hydrogenase/genetics , Hydrogenase/metabolism , Multigene Family , Nitrogen/metabolism , Nitrogenase/genetics , Nitrogenase/metabolism
7.
Appl Environ Microbiol ; 81(13): 4316-28, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25888177

ABSTRACT

Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes.


Subject(s)
Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Gene Deletion , Nitrogen/metabolism , DNA Transposable Elements , Gene Knockout Techniques , Genetic Testing , Mutagenesis, Insertional , Urea/metabolism
8.
FEMS Microbiol Lett ; 346(2): 105-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23826991

ABSTRACT

The conversion of branched-chain amino acids to branched-chain acids or alcohols is an important aspect of flavor in the food industry and is dependent on the Ehrlich pathway found in certain lactic acid bacteria. A key enzyme in the pathway, the 2-keto acid decarboxylase (KDC), is also of interest in biotechnology applications to produce small branched-chain alcohols that might serve as improved biofuels or other commodity feedstocks. This enzyme has been extensively studied in the model bacterium Lactococcus lactis, but is also found in other bacteria and higher organisms. In this report, distinct homologs of the L. lactis KDC originally annotated as pyruvate decarboxylases from Psychrobacter cryohalolentis K5 and P. arcticus 273-4 were cloned and characterized, confirming a related activity toward specific branched-chain 2-keto acids derived from branched-chain amino acids. Further, KDC activity was confirmed in intact cells and cell-free extracts of P. cryohalolentis K5 grown on both rich and defined media, indicating that the Ehrlich pathway may also be utilized in some psychrotrophs and psychrophiles. A comparison of the similarities and differences in the P. cryohalolentis K5 and P. arcticus 273-4 KDC activities to other bacterial KDCs is presented.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Bacterial Proteins/metabolism , Carboxy-Lyases/metabolism , Psychrobacter/enzymology , Alcohol Dehydrogenase , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Hydrogen-Ion Concentration , Kinetics , Psychrobacter/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...