Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Cycle ; 7(16): 2591-600, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18719384

ABSTRACT

Recently, we and others identified the microRNA miR-34a as a target of the tumor suppressor gene product p53. Ectopic miR-34a induces a G(1) cell cycle arrest, senescence and apoptosis. Here we report that miR-34a expression is silenced in several types of cancer due to aberrant CpG methylation of its promoter. 19 out of 24 (79.1%) primary prostate carcinomas displayed CpG methylation of the miR-34a promoter and concomitant loss of miR-34a expression. CpG methylation of the miR-34a promoter was also detected in breast (6/24; 25%), lung (7/24; 29.1%), colon (3/23; 13%), kidney (3/14; 21.4%), bladder (2/6; 33.3%) and pancreatic (3/19; 15.7%) carcinoma cell lines, as well as in melanoma cell lines (19/44; 43.2%) and primary melanoma (20/32 samples; 62.5%). Silencing of miR-34a was dominant over its transactivation by p53 after DNA damage. Re-expression of miR-34a in prostate and pancreas carcinoma cell lines induced senescence and cell cycle arrest at least in part by targeting CDK6. These results show that miR-34a represents a tumor suppressor gene which is inactivated by CpG methylation and subsequent transcriptional silencing in a broad range of tumors.


Subject(s)
CpG Islands , DNA Methylation , Gene Expression Regulation, Neoplastic , Gene Silencing , MicroRNAs/genetics , Neoplasms/genetics , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 6/metabolism , Humans , Mice , Promoter Regions, Genetic , Tumor Suppressor Protein p53/metabolism
2.
Clin Cancer Res ; 14(1): 130-8, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18172262

ABSTRACT

PURPOSE: The receptor tyrosine kinase Axl has recently been identified as a critical element in the invasive properties of glioma cell lines. However, the effect of Axl and its ligand growth arrest--specific gene 6 (Gas6) in human gliomas is still unknown. EXPERIMENTAL DESIGN: Axl and Gas6 expression was studied in 42 fresh-frozen and 79 paraffin-embedded glioma specimens by means of reverse transcription-PCR and immunohistochemistry. The prognostic value of Axl and Gas6 expression was evaluated using a population-based tissue microarray derived from a cohort of 55 glioblastoma multiforme (GBM) patients. RESULTS: Axl and Gas6 were detectable in gliomas of malignancy grades WHO 2 to 4. Moderate to high Axl mRNA expression was found in 61%, Axl protein in 55%, Gas6 mRNA in 81%, and Gas6 protein in 74% of GBM samples, respectively. GBM patients with high Axl expression and Axl/Gas6 coexpression showed a significantly shorter time to tumor progression and an association with poorer overall survival. Comparative immunohistochemical studies showed that Axl staining was most pronounced in glioma cells of pseudopalisades and reactive astrocytes. Additionally, Axl/Gas6 coexpression was observed in glioma cells and tumor vessels. In contrast, Axl staining was not detectable in nonneoplastic brain tissue and Gas6 was strongly expressed in neurons. CONCLUSIONS: In human gliomas, Axl and Gas6 are frequently overexpressed in both glioma and vascular cells and predict poor prognosis in GBM patients. Our results indicate that specific targeting of the Axl/Gas6 signaling pathway may represent a potential new approach for glioma treatment.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Intercellular Signaling Peptides and Proteins/biosynthesis , Oncogene Proteins/biosynthesis , Receptor Protein-Tyrosine Kinases/biosynthesis , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Disease-Free Survival , Female , Gene Expression , Glioblastoma/metabolism , Glioblastoma/mortality , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis , Tissue Array Analysis , Axl Receptor Tyrosine Kinase
3.
Cancer Res ; 67(23): 11368-76, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18056464

ABSTRACT

Protein tyrosine kinases (PTKs) play a critical role in the manifestation of cancer cell properties, and respective signaling mechanisms have been studied extensively on immortalized tumor cells. To characterize and analyze commonly used cancer cell lines with regard to variations in the primary structure of all expressed PTKs, we conducted a cDNA-based sequence analysis of the entire tyrosine kinase transcriptome of 254 established tumor cell lines. The profiles of cell line intrinsic PTK transcript alterations and the evaluation of 155 identified polymorphisms and 234 somatic mutations are made available in a database designated "Tykiva" (tyrosine kinome variant). Tissue distribution analysis and/or the localization within defined protein domains indicate functional relevance of several genetic alterations. The cysteine replacement of the highly conserved Y367 residue in fibroblast growth factor receptor 4 or the Q26X nonsense mutation in the tumor-suppressor kinase CSK are examples, and may contribute to cell line-specific signaling characteristics and tumor progression. Moreover, known variants, such as epidermal growth factor receptor G719S, that were shown to mediate anticancer drug sensitivity could be detected in other than the previously reported tumor types. Our data therefore provide extensive system information for the design and interpretation of cell line-based cancer research, and may stimulate further investigations into broader clinical applications of current cancer therapeutics.


Subject(s)
Gene Expression Profiling , Mutation/genetics , Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Cell Line , Cells, Cultured , DNA, Complementary/analysis , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction
4.
Cancer Genet Cytogenet ; 170(1): 48-53, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16965954

ABSTRACT

Signal transduction via tyrosine phosphorylation, normally fine-tuned by the concerted action of both protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is a key mechanism in tumorigenesis. PTP-PEST, a ubiquitously expressed cytoplasmic tyrosine phosphatase, is thought to play an important role in cell adhesion and motility, and may be involved in metastasis. A search for sequence variations within the gene PTPN12 (alias PTP-PEST) was performed in breast cancer cell lines, leading to the identification of three amino acid substitutions at positions 322, 573, and 709. These alterations were also found in squamous cell carcinoma cell lines and could be verified in primary human breast and kidney tumor samples. Analysis of peripheral blood samples confirmed the germline origin of these alterations. Furthermore, functional characterization of the Ile322 and Ala573 PTP-PEST mutants revealed an enhancement of in vitro phosphatase activity, whereas the Lys709 variant showed reduced catalytic activity. These data demonstrate the existence of PTP-PEST variants that might be meaningful for human cancer and underscore the need for further characterizing PTP-PEST and its signaling pathways in context of this disease.


Subject(s)
Breast Neoplasms/enzymology , Genetic Variation , Protein Tyrosine Phosphatases/genetics , Base Sequence , Cell Line , DNA Primers , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 12
5.
Cancer Res ; 62(3): 840-7, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11830541

ABSTRACT

Expression analysis of genes encoding components of the phosphotyrosine signaling system by cDNA array hybridization revealed elevated levels of FGFR4 transcripts in several mammary carcinoma cell lines. In the FGFR4 gene transcript from MDA-MB-453 mammary carcinoma cells, a G to A conversion was discovered that results in the substitution of glycine by arginine at position 388 in the transmembrane domain of the receptor. The Arg(388) allele was also found in cell lines derived from a variety of other tumor types as well as in the germ-line of cancer patients and healthy individuals. Analysis of three geographically separated groups indicated that it occurs in approximately 50% of the human population. Investigation of the clinical data of 84 breast cancer patients revealed that homo- or heterozygous carriers of the Arg(388) allele had a significantly reduced disease-free survival time (P = 0.01) within a median follow-up of 62 months. Moreover, the FGFR4 Arg(388) allele was associated with early lymph node metastasis and advanced tumor-node-metastasis (TNM) stage in 82 colon cancer patients. Consistent with this finding, MDA-MB-231 mammary tumor cells expressing FGFR4 Arg(388) exhibited increased motility relative to cells expressing the FGFR4 Gly(388) isotype. Our results support the conclusion that the FGFR4 Arg(388) allele represents a determinant that is innocuous in healthy individuals but predisposes cancer patients for significantly accelerated disease progression.


Subject(s)
Alleles , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Movement/genetics , Receptors, Fibroblast Growth Factor/genetics , Amino Acid Sequence , Arginine/genetics , Breast Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Disease-Free Survival , Genotype , Humans , Molecular Sequence Data , Mutation, Missense , Polymorphism, Single Nucleotide , Receptor, Fibroblast Growth Factor, Type 4 , Receptors, Fibroblast Growth Factor/biosynthesis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...