Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7985): 95-99, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914947

ABSTRACT

Seismic images of Earth's interior have revealed two continent-sized anomalies with low seismic velocities, known as the large low-velocity provinces (LLVPs), in the lowermost mantle1. The LLVPs are often interpreted as intrinsically dense heterogeneities that are compositionally distinct from the surrounding mantle2. Here we show that LLVPs may represent buried relics of Theia mantle material (TMM) that was preserved in proto-Earth's mantle after the Moon-forming giant impact3. Our canonical giant-impact simulations show that a fraction of Theia's mantle could have been delivered to proto-Earth's solid lower mantle. We find that TMM is intrinsically 2.0-3.5% denser than proto-Earth's mantle based on models of Theia's mantle and the observed higher FeO content of the Moon. Our mantle convection models show that dense TMM blobs with a size of tens of kilometres after the impact can later sink and accumulate into LLVP-like thermochemical piles atop Earth's core and survive to the present day. The LLVPs may, thus, be a natural consequence of the Moon-forming giant impact. Because giant impacts are common at the end stages of planet accretion, similar mantle heterogeneities caused by impacts may also exist in the interiors of other planetary bodies.

2.
Sci Adv ; 9(42): eadi6153, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37862409

ABSTRACT

The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.

3.
Nature ; 611(7934): 88-92, 2022 11.
Article in English | MEDLINE | ID: mdl-36261527

ABSTRACT

Accurate knowledge of the mineralogy is essential for understanding the lower mantle, which represents more than half of Earth's volume. CaSiO3 perovskite is believed to be the third-most-abundant mineral throughout the lower mantle, following bridgmanite and ferropericlase1-3. Here we experimentally show that the calcium solubility in bridgmanite increases steeply at about 2,300 kelvin and above 40 gigapascals to a level sufficient for a complete dissolution of all CaSiO3 component in pyrolite into bridgmanite, resulting in the disappearance of CaSiO3 perovskite at depths greater than about 1,800 kilometres along the geotherm4,5. Hence we propose a change from a two-perovskite domain (TPD; bridgmanite plus CaSiO3 perovskite) at the shallower lower mantle to a single-perovskite domain (SPD; calcium-rich bridgmanite) at the deeper lower mantle. Iron seems to have a key role in increasing the calcium solubility in bridgmanite. The temperature-driven nature can cause large lateral variations in the depth of the TPD-to-SPD change in response to temperature variations (by more than 500 kilometres). Furthermore, the SPD should have been thicker in the past when the mantle was warmer. Our finding requires revision of the deep-mantle mineralogy models and will have an impact on our understanding of the composition, structure, dynamics and evolution of the region.

4.
Adv Mater ; 32(33): e2002401, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32627918

ABSTRACT

Newly discovered 2D Janus transition metal dichalcogenides layers have gained much attention from a theory perspective owing to their unique atomic structure and exotic materials properties, but little to no experimental data are available on these materials. Here, experimental and theoretical studies establish the vibrational and optical behavior of 2D Janus S-W-Se and S-Mo-Se monolayers under high pressures for the first time. Chemical vapor deposition (CVD)-grown classical transition metal dichalcogenides (TMD) monolayers are first transferred onto van der Waals (vdW) mica substrates and converted to 2D Janus sheets by surface plasma technique, and then integrated into a 500 µm size diamond anvil cell for high-pressure studies. The results show that 2D Janus layers do not undergo phase transition up to 15 GPa, and in this pressure regime, their vibrational modes exhibit a nonmonotonic response to the applied pressures (dω/dP). Interestingly, these 2D Janus monolayers exhibit unique blueshift in photoluminescence (PL) upon compression, which is in contrast to many other traditional semiconductor materials. Overall theoretical simulations offer in-depth insights and reveal that the overall optical response is a result of competition between the ab-plane (blueshift) and c-axis (redshift) compression. The overall findings shed the very first light on how 2D Janus monolayers respond under extreme pressures and expand the fundamental understanding of these materials.

5.
Proc Natl Acad Sci U S A ; 117(22): 11981-11986, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32414927

ABSTRACT

Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.

6.
Nat Commun ; 6: 6586, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25858349

ABSTRACT

Seismic anisotropy has been widely observed in crust and mantle materials and plays a key role in the understanding of structure and flow patterns. Although seismic anisotropy can be explained by the crystal preferred orientation (CPO) of highly anisotropic minerals in the crust, that is, amphibole, experimental studies on the CPO of amphibole are limited. Here we present the results of novel experiments on simple shear deformation of amphibolite at high pressure and temperatures (1 GPa, 480-700 °C). Depending on the temperature and stress, the deformed amphibole produced three types of CPOs and resulted in a strong seismic anisotropy. Our data provide a new understanding of the observed seismic anisotropy. The seismic data obtained from the amphibole CPOs revealed that anomalous seismic anisotropy observed in the deep crust, subducting slab and mantle wedge can be attributed to the CPO of amphibole.

SELECTION OF CITATIONS
SEARCH DETAIL
...