Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 15(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234259

ABSTRACT

We investigated the selective etching of Si versus Si1−xGex with various Ge concentrations (x = 0.13, 0.21, 0.30, 0.44) in tetramethyl ammonium hydroxide (TMAH) solution. Our results show that the Si1−xGex with a higher Ge concentration was etched slower due to the reduction in the Si(Ge)−OH bond. Owing to the difference in the etching rate, Si was selectively etched in the Si0.7Ge0.3/Si/Si0.7Ge0.3 multi-layer. The etching rate of Si depends on the Si surface orientation, as TMAH is an anisotropic etchant. The (111) and (010) facets were formed in TMAH, when Si was laterally etched in the <110> and <100> directions in the multi-layer, respectively. We also investigated the effect of the addition of Triton X-100 in TMAH on the wet etching process. Our results confirmed that the presence of 0.1 vol% Triton reduced the roughness of the etched Si and Si1−xGex surfaces. Moreover, the addition of Triton to TMAH could change the facet formation from (010) to (011) during Si etching in the <100>-direction. The facet change could reduce the lateral etching rate of Si and consequently reduce selectivity. The decrease in the layer thickness also reduced the lateral Si etching rate in the multi-layer.

2.
Sci Rep ; 10(1): 13673, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32792578

ABSTRACT

Phase-change memory utilizing amorphous-to-crystalline phase-change processes for reset-to-set operation as a nonvolatile memory has been recently commercialized as a storage class memory. Unfortunately, designing new phase-change materials (PCMs) with low phase-change energy and sufficient thermal stability is difficult because phase-change energy and thermal stability decrease simultaneously as the amorphous phase destabilizes. This issue arising from the trade-off relationship between stability and energy consumption can be solved by reducing the entropic loss of phase-change energy as apparent in crystalline-to-crystalline phase-change process of a GeTe/Sb2Te3 superlattice structure. A paradigm shift in atomic crystallography has been recently produced using a quasi-crystal, which is a new type of atomic ordering symmetry without any linear translational symmetry. This paper introduces a novel class of PCMs based on a quasicrystalline-to-approximant crystalline phase-change process, whose phase-change energy and thermal stability are simultaneously enhanced compared to those of the GeTe/Sb2Te3 superlattice structure. This report includes a new concept that reduces entropic loss using a quasicrystalline state and takes the first step in the development of new PCMs with significantly low phase-change energy and considerably high thermal stability.

3.
Molecules ; 25(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059446

ABSTRACT

An amorphous Si (a-Si) solar cell with a back reflector composed of zinc oxide (ZnO) and silver (Ag) is potentially the most plausible and flexible solar cell if a graphite sheet is used as the substrate. Graphite supplies lightness, conductivity and flexibility to devices. When a graphite sheet is used as the substrate, carbon can diffuse into the Ag layer in the subsequent p-i-n process at 200-400 °C. To prevent this, we added an oxide layer as a carbon diffusion barrier between the carbon substrate and the back reflector. For the carbon diffusion barrier, silicon oxide (SiO2) or tin oxide (SnOx) was used. We evaluated the thermal stability of the back reflector of a carbon substrate using secondary-ion mass spectrometry (SIMS) to analyze the carbon diffusion barrier material. We confirmed the deposition characteristics, reflectance and prevention of carbon diffusion with and without the barrier. Finally, the structures were incorporated into the solar cell and their performances compared. The results showed that the back reflectors that were connected to a carbon diffusion barrier presented better performance, and the reflector with an SnOx layer presented the best performance.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Graphite/chemistry , Solar Energy , Diffusion , Electric Conductivity , Oxides , Silicon Dioxide/chemistry , Silver/chemistry , Sunlight , Zinc Oxide/chemistry
4.
Nanoscale ; 11(27): 12871-12877, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31243409

ABSTRACT

Recently, there have been various attempts to demonstrate the feasibility of transition metal dichalcogenide (TMD) transistors for digital logic circuits. A complementary inverter circuit, which is a basic building block of a logic circuit, was implemented in earlier works by heterogeneously integrating n- and p-channel transistors fabricated on different TMD materials. Subsequently, to simplify the circuit design and fabrication process, complementary inverters were constructed on single-TMD materials using ambipolar transistors. However, continuous transition from the electron-conduction to the hole-conduction state in the ambipolar devices led to the problem of a high leakage current. Here, we report a polarity-controllable TMD transistor that can operate as both an n- and a p-channel transistor with a low leakage current of a few picoamperes. The device polarity can be switched simply by converting the sign of the drain voltage. This is because a metal-like tungsten ditelluride (WTe2) with a low carrier concentration is used as a drain contact, which subsequently allows selective carrier injection at the palladium/tungsten diselenide (WSe2) junction. In addition, by using the operating principle of the polarity-controllable transistor, we demonstrate a complementary inverter circuit on a single TMD channel material (WSe2), which exhibits a very low static power consumption of a few hundred picowatts. Finally, we confirm the expandability of this polarity-controllable transistor toward more complex logic circuits by presenting the proper operation of a three-stage ring oscillator.

5.
J Nanosci Nanotechnol ; 16(5): 4808-13, 2016 May.
Article in English | MEDLINE | ID: mdl-27483826

ABSTRACT

The effects of dry cleaning of a HfO2 gate stack using NF3 only and a NF3/NH3 gas mixture plasma were investigated. The plasma dry cleaning process was carried out after HfO2 deposition using an indirect down-flow capacitively coupled plasma (CCP) system. An analysis of the chemical composition of the HfO2 gate stacks by XPS indicated that fluorine was incorporated into the HfO2 films during the plasma dry cleaning. Significant changes in the HfO2 chemical composition were observed as a result of the NF3 dry cleaning, while they were not observed in this case of NF3/NH3 dry cleaning. TEM results showed that the interfacial layer (IL) between the HfO2 and Si thickness was increased by the plasma dry cleaning. However, in the case of NF3/NH3 dry cleaning using 150 W, the IL thickness was suppressed significantly compared to the sample that had not been dry cleaned. Its electrical properties were also improved, including the low gate leakage currents, and reduced EOT. Finally, the finding show that the IL thickness of the HfO2 gate stack can be controlled by using the novel NF3/NH3 dry cleaning process technique without any the significant changes in chemical composition and metal-oxide-semiconductor (MOS) capacitor characteristics.

6.
J Nanosci Nanotechnol ; 16(5): 5168-72, 2016 May.
Article in English | MEDLINE | ID: mdl-27483894

ABSTRACT

In this study, we report experimental results on the epitaxial growth of InP layer on GaAs (001) substrate by using MOCVD. We have systematically controlled nucleation steps in order to obtain InP epitaxial layers with high crystallinity quality. The controlling parameters were flow ratio of V/IIIsources and thicknesses of nucleation layer for nucleation steps. We successfully improved the surface roughness and crystallinity of IIP epitaxial layers on GaAs substrates.

7.
Sci Rep ; 5: 15374, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26489847

ABSTRACT

The decidedly unusual co-occurrence of bipolar, complementary, and unipolar resistive switching (BRS, CRS, and URS, respectively) behavior under the same high set current compliance (set-CC) is discussed on the basis of filament geometry in a Pt/SiOx/TiN stack. Set-CC-dependent scaling behavior with relations Ireset ~ R0(-α) and Vreset ~ R0(-ß) differentiates BRS under low set-CC from other switching behaviors under high set-CC due to a low α and ß involving a narrow filamentary path. Because such co-occurrence is observed only in the case of a high α and ß involving a wide filamentary path, such a path can be classified into three different geometries according to switching behavior in detail. From the cyclic switching and a model simulation, we conclude that the reset of BRS originates from a narrower filamentary path near the top electrode than that of CRS due to the randomness of field-driven migration even under the same set-CC. Also, we conclude that URS originates from much narrower inversed conical filamentary path. Therefore, filament-geometry-dependent electric field and/or thermal effects can precisely describe the entire switching behaviors in this experiment.

8.
ACS Appl Mater Interfaces ; 6(6): 3896-906, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24467437

ABSTRACT

We investigated the effects of postnitridation on the structural characteristics and interfacial reactions of HfO2 thin films grown on InP by atomic layer deposition (ALD) as a function of film thickness. By postdeposition annealing under NH3 vapor (PDN) at 600 °C, an InN layer formed at the HfO2/InP interface, and ionized NHx was incorporated in the HfO2 film. We demonstrate that structural changes resulting from nitridation of HfO2/InP depend on the film thickness (i.e., a single-crystal interfacial layer of h-InN formed at thin (2 nm) HfO2/InP interfaces, whereas an amorphous InN layer formed at thick (>6 nm) HfO2/InP interfaces). Consequently, the tetragonal structure of HfO2 transformed into a mixture structure of tetragonal and monoclinic because the interfacial InN layer relieved interfacial strain between HfO2 and InP. During postdeposition annealing (PDA) in HfO2/InP at 600 °C, large numbers of oxidation states were generated as a result of interfacial reactions between interdiffused oxygen impurities and out-diffused InP substrate elements. However, in the case of the PDN of HfO2/InP structures at 600 °C, nitrogen incorporation in the HfO2 film effectively blocked the out-diffusion of atomic In and P, thus suppressing the formation of oxidation states. Accordingly, the number of interfacial defect states (Dit) within the band gap of InP was significantly reduced, which was also supported by DFT calculations. Interfacial InN in HfO2/InP increased the electron-barrier height to ∼0.6 eV, which led to low-leakage-current density in the gate voltage region over 2 V.

9.
J Nanosci Nanotechnol ; 14(10): 7641-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942841

ABSTRACT

Undoped and in-situ phosphorus-doped epitaxial Si(1-x)C(x) layers were grown on chemically cleaned Si (100) substrates by using a UHV-CVD process. The carbon concentrations of the epitaxial layers and growth temperatures were varied, and the effects of post annealing processes were then investigated. In the defect-free films, the carbon content in the Si(1-x)C(x) layer was analyzed to be about 1.2% by XRD measurement. About 20% loss of the substitutional carbon atoms occurred after annealing treatment at 1000 degrees C in N2 ambient due to the transfer of the substititual carbon atoms to interstitial sites as well as the formation of the ß-SiC precipitates. The changes in microstructures were analyzed by the cross sectional transmission electron microscopy. The surface of the films shows partially polycrystalline structures in high PH, flow rate, due to surface poisoning by phosphorus segregation. Fully a 100% substitutionality of carbon atoms in the epitaxial Si(1-x)C(x) film is achieved by the addition of PH3 and post annealing.

10.
J Nanosci Nanotechnol ; 12(7): 6096-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966715

ABSTRACT

Concerning the oxidation behavior of Si1-xGe(x) (x = 0.15, 0.3) nanowires at high temperature, Si1-xGe(x) nanowires were thermally oxidized for various lengths of time compared with Si nanowires, Si and Si1-xGe(x) thin films. The structural and compositional properties of the oxidized nanowires were characterized using several transmission electron microscopy (TEM) techniques including energy dispersive X-ray spectroscopy (EDS), which confirm that the oxidation rates of Si1-xGe(x) and Si (silicon) nanowires were saturated with increasing oxidation time due to retarding behavior, while the oxidation rate of Si1-xGe(x) nanowires were faster than that of Si nanowires. In addition, the differences in Ge (germanium) content and stress distribution contribute to the observed differences in oxidation behavior.

11.
J Nanosci Nanotechnol ; 12(4): 3650-4, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849188

ABSTRACT

For this investigation of the Ge behavior of condensed Si(1-y)Ge(y) (y > x) cores during the oxidation of Si(1-x)Ge(x) nanowires, Si(1-x)Ge(x) nanowires were grown in a tube furnace by the vapor-liquid-solid method and thermally oxidized. The test results were characterized using several techniques of transmission electron microscopy. The two types of Ge condensation are related to the diameter and Ge content of the nanowires. The consumption of Si atoms in prolonged oxidation caused the condensed SiGe cores to become Ge-only cores; and the continuous oxidation resulted in the oxidation of the Ge cores. The oxidation of Ge atoms was confirmed by scanning transmission electron microscopy.

12.
ACS Nano ; 4(12): 7283-92, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21058705

ABSTRACT

This study demonstrates solution-processed epitaxial growth of Te on Se(x)Te(y) nanorods and the generation of periodic defects in the core. We investigated Se(x)Te(y)@Te core-shell nanorods with a diameter of 40-50 nm and a length of 600-700 nm. In spite of a large lattice mismatch between the Se(x)Te(y) core and the Te shell, the soft character of the core and the shell at a high reaction temperature allowed epitaxial growth of Te on the Se(x)Te(y) nanorods. During the cooling process to room temperature (below the glass transition temperatures), the lattice mismatch between the core and the shell led to homogeneous stress along the epitaxial interface so that periodic defects were generated in the core.

13.
J Am Chem Soc ; 131(38): 13634-8, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19725494

ABSTRACT

Te/Sb/Ge and Sb/Te/Ge multilayer films with an atomically controlled interface were synthesized using effusion cell and e-beam techniques. The layers interacted during the deposition, resulting in films composed of Sb-Te+Sb-Sb/Ge and Sb/Sb-Te/Ge-Te/Ge respectively. Atomic diffusion and chemical reactions in films during the annealing process were investigated by photoemission spectroscopy. In the case of Te/Sb/Ge, Ge diffused into the Sb-Te region released Sb in Sb-Te bonds and interacted with residual Te, resulting in a change in valence band line shape, which was similar to that of a Ge(1)Sb(2)Te(4) crystalline phase. The Ge-Sb-Te alloy underwent a stoichiometric change during the process, resulting in a 1.2:2:4 ratio, consistent with the most stable stoichiometry value calculated by ab initio density-functional theory. The experimental results strongly suggest that the most stable structure is generated through a reaction process involving the minimization of total energy. In addition, Ge in the Sb/Te/Ge film diffused into Sb-Te region by thermal energy. However, Ge was not able to diffuse to the near surface because Sb atoms of the high concentration at the surface were easily segregated and hindered the diffusion of other elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...