Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Pathol J ; 35(6): 674-683, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832047

ABSTRACT

Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as ß-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.

2.
Virus Res ; 197: 8-12, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25445339

ABSTRACT

This study attempted to cure the edible mushroom Lentinula edodes strain FMRI0339 of the L. edodes mycovirus (LeV) in order to obtain an isogenic virus-free fungal strain as well as a virus-infected strain for comparison. Mycelial fragmentation, followed by being spread on a plate with serial dilutions resulted in a virus-free colony. Viral absence was confirmed with gel electrophoresis after dsRNA-specific virus purification, Northern blot analysis, and PCR using reverse transcriptase (RT-PCR). Once cured, all of fungal cultures remained virus-free over the next two years. Interestingly, the viral titer of LeV varied depending on the culture condition. The titer from the plate culture showed at least a 20-fold higher concentration than that grown in the liquid culture. However, the reduced virus titer in the liquid culture was recovered by transferring the mycelia to a plate containing the same medium. In addition, oxygen-depleted culture conditions resulted in a significant decrease of viral concentration, but not to the extent seen in the submerged liquid culture. Although no discernable phenotypic changes in colony morphology were observed, virus-cured strains showed significantly higher growth rates and mycelial mass than virus-infected strains. These results indicate that LeV infection has a deleterious effect on mycelial growth.


Subject(s)
RNA Viruses/isolation & purification , Shiitake Mushrooms/growth & development , Shiitake Mushrooms/virology , Viral Load , Mycelium/growth & development
3.
J Microbiol ; 51(1): 118-22, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23456720

ABSTRACT

A mycovirus was isolated from an edible mushroom, Lentinula edodes, that was suffering from a severe epidemic. Fractionation of the diseased cell extract by isopycnic centrifugation with 50% CsCl revealed that the diseased mushroom was infected by Lentinula edodes spherical virus (LeSV), a new spherical virus with a diameter of 55 nm. The particle of LeSV encapsidated the 12 kb RNA genome by a 120 kDa coat protein. BLAST analysis of the partially sequenced LeSV genome showed 95% sequence identity with a putative RNA-dependent RNA polymerase (RdRp) gene of the mycovirus HKB, which was previously reported as being a double-stranded RNA (dsRNA) element. In contrast to HKB, the RNA genome in LeSV is encapsidated by the 120 kDa coat protein. To confirm that the LeSV coat protein is encoded by the viral genome, the N-terminal amino acid sequence of the coat protein was determined. The resulting N-terminal amino acid sequence, N-SALDVAPVVPELYFXXLEV-C, was found to be located in the middle of the HKB ORF1, suggesting that the LeSV coat protein was indeed encoded by the virus. To detect LeSV in L. edodes, a primer set targeting the RdRp gene was designed based on the partial sequence of the LeSV genome. RT-PCR analysis showed that 56 of the 84 commercially available dikaryotic cultivars carry LeSV. The transmission pattern of the virus was determined by analysing basidiospores from LeSV-infected and LeSV-free fruiting bodies. Nine out of 10 basidiospores from the LeSV-infected cultivars contained the virus while the spores from the LeSV-free parent were free of LeSV, suggesting that vertical transmission is the primary mode of LeSV propagation.


Subject(s)
RNA Viruses/isolation & purification , Shiitake Mushrooms/virology , Amino Acid Sequence , Capsid Proteins/genetics , Genome, Viral , Microscopy, Electron, Transmission , Molecular Sequence Data , RNA Viruses/genetics , RNA Viruses/ultrastructure , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...