Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630150

ABSTRACT

Ionic wind, which is generated by a corona discharge, is a promising field that offers significant advantages by directly converting electrical energy into kinetic energy. Because of the electrical characteristics of ionic wind, most studies aiming to improve the performance of ionic wind generators have focused on modifying the geometry of electrode configurations. A mesh-type electrode is one of the electrodes used as a collecting electrode in an ionic wind generator. Using a mesh electrode results in decreased momentum of the ionic wind and increased pressure drop due to frictional loss of the flow. In this study, to minimize the reduction in momentum, a mesh electrode with a central hole was proposed and investigated. Experiments were conducted with the configuration of a needle and mesh with the central hole. These experiments analyzed the effect of the central hole diameter and the distance between the needle and the mesh electrodes on the electrical and physical characteristics of the ionic wind. The addition of the central hole led to a higher average velocity and lower current, thus resulting in increased energy conversion efficiency. The presented configuration offers a simple geometry without electrical and physical interference from complex configurations, and it is considered to have the potential to improve energy conversion efficiency and optimize ionic wind flow.

2.
Micromachines (Basel) ; 13(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457919

ABSTRACT

Experimental and numerical analysis of the drop-on-demand inkjet was conducted to determine the jetting characteristics and meniscus motion under the control of the ink supply pressure. A single transparent nozzle inkjet head driven by a piezoelectric actuator was used to eject droplets. To control ink supply pressure, the pressure of the air in the reservoir was regulated by a dual valve pressure controller. The inkjet performance and the motion of the meniscus were evaluated by visualization and numerical simulation. A two-dimensional axisymmetric numerical simulation with the dynamic mesh method was performed to simulate the inkjet dynamics, including the actual deformation of the piezoelectric actuator. Numerical simulation showed good agreement with the experimental results of droplet velocity and volume with an accuracy of 87.1%. Both the experimental and simulation results showed that the drop volume and velocity were linearly proportional to the voltage change. For the specific voltages, an analysis of the effect of the ink supply pressure control was conducted. At the maximum negative pressure, -3 kPa, the average velocity reductions were 0.558 and 0.392 m/s in the experiment and simulation, respectively, which were 18.7 and 11.6% less than those of the uncontrolled case of 0 kPa. Therefore, the simulation environment capable of simulating the entire inkjet dynamics, including meniscus movement regarded to be successfully established. The average volume reductions were 18.7 and 6.97 pL for the experiment and simulation, respectively, which were 21.7 and 9.17% less than those of the uncontrolled case. In the results of the meniscus motion simulation, the damping of the residual vibration agreed well with the experimental results according to the ink supply pressure change. Reducing the ink supply pressure reduced the speed and volume, improved the damping of residual vibrations, and suppressed satellite drops. Decreasing ink supply pressure can be expected to improve the stability and productivity of inkjet printing.

3.
Langmuir ; 38(7): 2185-2191, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35148120

ABSTRACT

We experimentally and analytically studied vapor-driven solutal Marangoni flow by varying volatile liquid sources on top of the water droplet. We checked and compared the effects of solubility and vapor pressures of volatile liquids on the internal flow pattern using particle image velocimetry (PIV) and the droplet shape using shadowgraphy experiments. To explain the internal flow, we explored the absorption and evaporation mechanism of the vapors and we found that Henry's constant of the volatile liquid is the primary factor. Based on the scaling arguments, we developed theoretical models to explain how much vapor is absorbed into the water droplet, and how the flow pattern occurs and evolves. The scaling models show that there is a good agreement with the experimental results. We believe that understanding this phenomenon is useful for microfluidics applications and fundamental liquid-gas interface problems where vapors can be absorbed into another liquid.

4.
J Anim Sci Technol ; 63(2): 367-379, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33987611

ABSTRACT

The objectives of this study were to evaluate convolutional neural network models and computer vision techniques for the classification of swine posture with high accuracy and to use the derived result in the investigation of the effect of dietary fiber level on the behavioral characteristics of the pregnant sow under low and high ambient temperatures during the last stage of gestation. A total of 27 crossbred sows (Yorkshire × Landrace; average body weight, 192.2 ± 4.8 kg) were assigned to three treatments in a randomized complete block design during the last stage of gestation (days 90 to 114). The sows in group 1 were fed a 3% fiber diet under neutral ambient temperature; the sows in group 2 were fed a diet with 3% fiber under high ambient temperature (HT); the sows in group 3 were fed a 6% fiber diet under HT. Eight popular deep learning-based feature extraction frameworks (DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, MobileNet, VGG16, VGG19, and Xception) used for automatic swine posture classification were selected and compared using the swine posture image dataset that was constructed under real swine farm conditions. The neural network models showed excellent performance on previously unseen data (ability to generalize). The DenseNet121 feature extractor achieved the best performance with 99.83% accuracy, and both DenseNet201 and MobileNet showed an accuracy of 99.77% for the classification of the image dataset. The behavior of sows classified by the DenseNet121 feature extractor showed that the HT in our study reduced (p < 0.05) the standing behavior of sows and also has a tendency to increase (p = 0.082) lying behavior. High dietary fiber treatment tended to increase (p = 0.064) lying and decrease (p < 0.05) the standing behavior of sows, but there was no change in sitting under HT conditions.

5.
Antioxidants (Basel) ; 9(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113990

ABSTRACT

This study investigated the effect of dietary astaxanthin (AST) on the meat quality, antioxidant status, and immune response of chickens exposed to heat stress. Four hundred and eighty male broilers were assigned to four treatments including AST0, AST20, AST40, and AST80 with 0, 20, 40, and 80 ppm astaxanthin supplementation levels, respectively. There was a linear decrease of malondialdehyde (MDA) in leg muscle. Catalase and superoxide dismutase levels in the plasma were linearly increased. There was a linear increase in the level of total antioxidant capacity in the leg muscle. The 3-ethylbenzothiazoline-6-sulfonate reducing activity of leg muscle was significantly increased in the AST80 treatment. The AST40 treatment showed an increase in 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity of leg muscles. Breast meat redness and yellowness were linearly increased. The astaxanthin-supplemented treatments exhibited lower drip loss and MDA concentration of leg muscle compared with the AST0 treatment at days 3 and 9 of storage. Supplementation of 40 or 80 mg/kg astaxanthin significantly decreased heat shock protein (HSP)27, HSP70, tumor necrosis factor alpha, and interleukin-6 expression in the livers. The feather corticosterone was significantly lower in the astaxanthin-supplemented treatments than in the AST0 treatment. In conclusion, astaxanthin decreased the hyperthermic stress level and improved meat quality, and antioxidant status of chickens exposed to heat stress.

6.
Animals (Basel) ; 10(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878254

ABSTRACT

This study aimed to investigate the effect of the l-arginine (Arg) inclusion and different doses of ZnO on the growth performance, intestinal microbiota and integrity, and immune status of weaned pigs. A total of 180 pigs (28-day-old) were randomly allotted to six treatments with six replicate pens in each treatment and five pigs per pen. The dietary treatments were Con (1.1% Arg); P-Zn (1.1% Arg + 2500 mg Zn as ZnO/kg diet); ARG (1.6% Arg); ZnArg1 (500 mg of Zn as ZnO/kg diet + 1.6% Arg); ZnArg2 (1000 mg of Zn as ZnO/kg diet + 1.6% Arg); ZnArg3 (2500 mg of Zn as ZnO/kg diet + 1.6% Arg). The overall result showed that the inclusion of ZnArg3 significantly improved the average daily gain of pigs compared with the Con treatment. There was a reduction in feed intake in pigs fed the Con diet compared with pigs fed the ZnArg3 diet at phase 1 and overall. At phase 1, pigs fed the ZnArg3 diet and P-Zn diet showed a decreased population of Clostridium spp. in the ileum compared with those of the Con treatment. In addition, a lower ileal Clostridium spp. population was detected in pigs fed the ZnArg2 diet compared with pigs fed the Con diet. The pigs fed ZnArg1 and ZnArg3 diets showed a greater villus height of duodenum compared with the Con and P-Zn treatments. The pigs in the Con treatment showed increased mRNA expression of heat shock protein-27 in the liver compared with the P-Zn, ZnArg1, ZnArg2, and ZnArg3 treatments. When fed the basal diet, mRNA expressions of interleukin-6 were increased in the muscle compared with the ZnArg3 treatment. Dietary supplementation with ZnArg2 decreased the mRNA expressions of interferon-γ in the muscle compared with the Con treatment. Supplementation with P-Zn, ZnArg1, ZnArg2, and ZnArg3 decreased mRNA expressions of tumor necrosis factor-α (TNF-α) compared with the Con treatment. The mRNA gene expressions of interleukin-4 were decreased in the jejunum of pigs fed P-Zn, ARG, ZnArg1, ZnArg2, and ZnArg3 diets compared with pigs fed the Con diet. The jejunum gene expression of toll-like receptor-4 was upregulated in the Con and ARG treatments compared with the ZnArg1 and ZnArg3. The ZnArg1, ZnArg2, and ZnArg3 treatments showed lower mRNA expression of TNF-α compared with the Con treatment. In conclusion, there was no difference in growth performance, intestinal microbiota, gene expression of interleukins between ZnArg1 and ZnArg3 treatments. Therefore, the low level of ZnO (500 mg/kg) plus 1.6% dietary Arg may be recommended for pigs during the weaning stress.

7.
Micromachines (Basel) ; 11(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993189

ABSTRACT

This study analyzed the characteristics of a small reciprocating pump with a cantilever valve driven by a piezo actuator. Three types of valves were fabricated to investigate the effect of the valve stiffness on the pump performance and to measure the variation in the flow rate according to the frequency. The flow rate increased with the driving frequency until a certain frequency was reached, and then it started to decrease. The rise in the pressure of the pump was found to increase as the stiffness decreased. The pump performance could be clearly distinguished according to the stiffness of the valve. The observation of the valve movements revealed that the valve opening time did not change regardless of the operating frequency, but it changed with the valve stiffness. The delay in time for the outlet valve increased significantly with an increase in the frequency. It seems that the overlap of the opening time of the inlet valve and the outlet valve plays an important role in pump performance. Therefore, it is advisable to use different designs for the inlet and outlet valves, where the shape and stiffness of the valve are adjusted.

8.
J Anim Physiol Anim Nutr (Berl) ; 103(4): 1160-1167, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31050054

ABSTRACT

This study investigated the effect of dietary nutmeg oil (NO) on growth performance, blood parameters, lipid peroxidation and heat shock protein (HSP) 70 expression in Korean native chicken (KNC) reared under hot temperature. We allocated 273 meat-type KNCs (Hanhyup-3, 4-week-old, body weight [BW] = 539.93 ± 1.75 g) to the following three treatments with seven replicate pens (13 birds/pen) per treatment. Three treatment diets were as follows: (a) Control, basal diet without NO supplementation; (b) NO 250; and (c) NO 500, basal diet supplemented with 250 and 500 ppm NO respectively. Diets and water were provided ad libitum throughout the 6-week feeding trial. During overall period (0-6 weeks), no differences (p > 0.05) were observed in BW gain (BWG), feed intake (FI) and feed conversion rate (FCR) among treatments. However, the FI at 0-3 weeks decreased (p < 0.05) quadratically with increasing NO levels. Most blood parameters did not differ (p > 0.05) among treatments, although the monocyte level of the NO 500 group was considerably lower (p > 0.05) than that of the other groups. Furthermore, dietary NO did not affect serum triglyceride, cholesterol, total protein, albumin, calcium, phosphorus and alanine aminotransferase (ALT) levels (p > 0.05); however, it linearly decreased serum aspartate aminotransferase (AST) level (p < 0.05). Additionally, serum malondialdehyde (MDA) concentration decreased (p < 0.05) and heart MDA concentration was lower (p = 0.08) with increasing dietary NO supplementation. After a 3-hr heat (35°C) challenge, the rectal temperature (RT) reduced (p < 0.05) linearly with increasing NO levels. Dietary NO did not affect liver HSP70 (p > 0.05) gene expression. In conclusion, NO potentially enhanced the ability of chickens to alleviate heat stress. Furthermore, our findings suggest that lipid oxidation inhibition by dietary NO likely mediated the enhanced heat-stress tolerance of the chickens.


Subject(s)
Chickens , Diet/veterinary , Heat Stress Disorders/veterinary , Myristica/chemistry , Plant Oils/pharmacology , Poultry Diseases/prevention & control , Animal Feed/analysis , Animals , Heat Stress Disorders/prevention & control , Hot Temperature , Plant Oils/administration & dosage , Weight Gain
9.
Opt Express ; 25(8): 9244-9251, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28438000

ABSTRACT

For an electrohydrodynamic (EHD) jet, variables such as the direction of the meniscus and the ejection stability need to be analyzed. Thus, the EHD jet should be observed three-dimensionally (3D) because the variables can only be obtained in the 3D field, especially in unstable modes. However, if the 3D field is reconstructed from multi-directional binary images, eliminating reconstruction errors caused by invisible areas is almost impossible, even when using a tomographic technique. To solve this problem, a new 3D reconstruction method including an ellipse estimation was developed in this study. The method was verified by numerical simulation and applied to estimate the jetting flow rate and the direction of an ethanol droplet ejected from a nozzle according to a voltage.

10.
Opt Lett ; 41(8): 1801-4, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27082349

ABSTRACT

In this Letter, a three-dimensional (3D) optical correction method, which was verified by simulation, was developed to reconstruct droplet-based flow fields. In the simulation, a synthetic phantom was reconstructed using a simultaneous multiplicative algebraic reconstruction technique with three detectors positioned at the synthetic object (represented by the phantom), with offset angles of 30° relative to each other. Additionally, a projection matrix was developed using the ray tracing method. If the phantom is in liquid, the image of the phantom can be distorted since the light passes through a convex liquid-vapor interface. Because of the optical distortion effect, the projection matrix used to reconstruct a 3D field should be supplemented by the revision ray, instead of the original projection ray. The revision ray can be obtained from the refraction ray occurring on the surface of the liquid. As a result, the error on the reconstruction field of the phantom could be reduced using the developed optical correction method. In addition, the developed optical method was applied to a Taylor cone which was caused by the high voltage between the droplet and the substrate.

11.
Appl Opt ; 52(19): 4494-504, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842243

ABSTRACT

Electrohydrodynamic jetting behaviors of liquid menisci were analyzed experimentally by three-dimensional optical shadowgraphic tomography. The tomographic algorithm was developed after a series of multiplicative algebraic reconstruction techniques updated the object's intensities by using a cubic cosine basis function to determine the weighting coefficients of the projection matrix. The algorithm was evaluated initially by using a synthesized three-dimensional droplet phantom. Three-dimensional reconstructions of several jetting modes were built based on three images of projection data captured by three high-speed cameras, which were positioned at an offset angle of 45° relative to one another.

12.
Appl Opt ; 51(24): 5834-44, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22907011

ABSTRACT

Three-dimensional optical tomography techniques were developed to reconstruct three-dimensional objects using a set of two-dimensional projection images. Five basis functions, such as cubic B-spline, o-Moms, keys, and cosine functions and Gaussian basis functions, were used to calculate the weighting coefficients for a projection matrix. Two different forms of a multiplicative algebraic reconstruction technique were also used to solve inverse problems. The reconstruction algorithm was examined by using several phantoms, which included droplet behaviors and random distributions of particles in a volume. The three-dimensional volume comprised of particles was reconstructed from four projection angles, which were positioned at an offset angle of 45° between each other. Then, three-dimensional velocity fields were obtained from the reconstructed particle volume by three-dimensional cross correlation. The velocity field of the synthetic vortex flow was reconstructed to analyze the three-dimensional tomography algorithm.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Tomography, Optical/methods , Artifacts , Computer Simulation , Image Processing, Computer-Assisted/methods , Models, Theoretical , Phantoms, Imaging
13.
J Nanosci Nanotechnol ; 9(12): 7298-302, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19908776

ABSTRACT

Electrohydrodynamic (EHD) spraying has been utilized in applications varying from micro-colloid thrusters to technology for film deposition and inkjet printing. Recently, EHD inkjet heads were developed to facilitate the fabrication of printed electronics such as digital displays, printed circuit boards (PCBs), and solar cells. Here, we report the fabrication and application of nanoscale nozzles for EHD inkjet printing. The nozzles were fabricated by depositing an electrically conductive layer on either the inside or outside of quartz micropipettes with sub-micron diameter tips. With the drop-on-demand control needed for inkjet heads, our nanoscale nozzles dispensed silver droplets in fine patterns on glass substrates.

14.
J Nanosci Nanotechnol ; 7(11): 3736-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18047048

ABSTRACT

The bulk piezoresistivity of carbon nanotube (CNT) in polymer matrix was discussed to develop a strain sensor for engineering applications. The polymer improves interfacial bonding between the nanotubes and the CNT composite and that enhances the strain transfer, repeatability, and linearity of the sensor. The largest contribution of piezoresistivity of the sensor may come from slippage of overlaying or bundled nanotubes in the matrix, from a macroscopic point of view. Nano interfaces of CNTs in a matrix polymer also contribute to the linear strain response compared to other micro size carbon filler. The strain sensor had a low bandwidth and adequate strain sensitivity. The nanocomposite strain sensor is particularly useful for detecting large strains which can monitor strain and stress on a structure with simple electric circuit for strain monitoring of structures.


Subject(s)
Electrochemistry/instrumentation , Electrochemistry/methods , Materials Testing/instrumentation , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Transducers , Crystallization/methods , Elasticity , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Materials Testing/methods , Nanotechnology/methods , Particle Size , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...