Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 15315, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30333620

ABSTRACT

One of the challenges of implementing free-space quantum key distribution (QKD) systems working in daylight is to remove unwanted background noise photons from sunlight. Elaborate elimination of background photons in the spectral, temporal, and spatial domains is an indispensable requirement to decrease the quantum bit error rate (QBER), which guarantees the security of the systems. However, quantitative effects of different filtering techniques and performance optimization in terms of the secure key rate have not been investigated. In this study, we quantitatively analyze how the performance of the QBER and the key rates changes for different combinations of filtering techniques in a free-space BB84 QKD system in daylight. Moreover, we optimize the conditions of filtering techniques in order to obtain the maximum secure key rate.

2.
Opt Express ; 25(17): 20045-20055, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041690

ABSTRACT

Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.

3.
Opt Express ; 25(10): 11894-11909, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28788747

ABSTRACT

Needs for providing security to end users have brought installation of quantum key distribution (QKD) in one-to-many access networks such as passive optical networks. In the networks, a presence of optical power splitters makes issues for secure key rate more important. However, researches for QKD in access networks have mainly focused on implementation issues rather than protocol development for key rate enhancement. Since secure key rate is theoretically limited by a protocol, researches without protocol development cannot overcome the limit of secure key rate given by a protocol. This brings need of researches for protocol development. In this paper, we provide a new approach which provides secure key rate enhancement over the conventional protocol. Specifically, we propose the secure key rate formula in a passive optical network by extending the secure key rate formula based on the decoy-state BB84 protocol. For a passive optical network, we provide a way that incorporates cooperation across end users. Then, we show that the way can mitigate a photon number splitting (PNS) attack which is crucial in an well known decoy BB84 protocol. Especially, the proposed scheme enables multi-photon states to serve as secure keys unlike the conventional decoy BB84 protocol. Numerical simulations demonstrate that our proposed scheme outperforms the decoy BB84 protocol in secure key rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...