Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 98(5): 1253-1269, 2024 May.
Article in English | MEDLINE | ID: mdl-38483583

ABSTRACT

Since the 1940s, patch tests in healthy volunteers (Human Predictive Patch Tests, HPPTs) have been used to identify chemicals that cause skin sensitization in humans. Recently, we reported the results of a major curation effort to support the development of OECD Guideline 497 on Defined Approaches (DAs) for skin sensitization (OECD in Guideline No. 497: Defined Approaches on Skin Sensitisation, 2021a. https://doi.org/10.1787/b92879a4-en ). In the course of this work, we compiled and published a database of 2277 HPPT results for 1366 unique test substances (Strickland et al. in Arch Toxicol 97:2825-2837, 2023. https://doi.org/10.1007/s00204-023-03530-3 ). Here we report a detailed analysis of the value of HPPT data for classification of chemicals as skin sensitizers under the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals (GHS). As a result, we propose the dose per skin area (DSA) used for classification by the GHS to be replaced by or complemented with a dose descriptor that may better reflect sensitization incidence [e.g., the DSA causing induction of sensitization in one individual (DSA1+) or the DSA leading to an incidence of induction in 5% of the tested individuals (DSA05)]. We also propose standardized concepts and workflows for assessing individual HPPT results, for integrating multiple HPPT results and for using them in concert with Local Lymph Node Assay (LLNA) data in a weight of evidence (WoE) assessment. Overall, our findings show that HPPT results are often not sufficient for deriving unambiguous classifications on their own. However, where they are, the resulting classifications are reliable and reproducible and can be integrated well with those from other skin sensitization data, such as the LLNA.


Subject(s)
Dermatitis, Allergic Contact , Humans , Patch Tests , Dermatitis, Allergic Contact/etiology , Allergens/toxicity , Skin , Local Lymph Node Assay
2.
Arch Toxicol ; 97(11): 2825-2837, 2023 11.
Article in English | MEDLINE | ID: mdl-37615678

ABSTRACT

Critical to the evaluation of non-animal tests are reference data with which to assess their relevance. Animal data are typically used because they are generally standardized and available. However, when regulatory agencies aim to protect human health, human reference data provide the benefit of not having to account for possible interspecies variability. To support the evaluation of non-animal approaches for skin sensitization assessment, we collected data from 2277 human predictive patch tests (HPPTs), i.e., human repeat insult patch tests and human maximization tests, for skin sensitization from 1555 publications. We recorded protocol elements and positive or negative outcomes, developed a scoring system to evaluate each test for reliability, and calculated traditional and non-traditional dose metrics. We also traced each test result back to its original report to remove duplicates. The resulting database, which contains information for 1366 unique substances, was characterized for physicochemical properties, chemical structure categories, and protein binding mechanisms. This database is publicly available on the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods website and in the Integrated Chemical Environment to serve as a resource for additional evaluation of alternative methods and development of new approach methodologies for skin sensitization assessments.


Subject(s)
Benchmarking , Skin , Humans , Patch Tests , Reproducibility of Results , Databases, Factual
3.
Neurology ; 91(2 Suppl 1): S31-S37, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29987133

ABSTRACT

OBJECTIVE: Several clinical trials targeting cutaneous neurofibromas (cNF) have been conducted; however, none has resulted in meaningful changes to care. The Clinical Trial Design and Development subgroup's goals were to (1) define key considerations in the design of clinical trials for cNF, (2) summarize existing data in relation to these considerations, and (3) provide consensus recommendations about key elements of trial design to accelerate the clinical development of therapies for cNF. METHODS: The subgroup, with experts from genetics, dermatology, neurology, oncology, and basic science, spanning academia, government research, and regulatory programs, and industry, reviewed published and unpublished data on clinical trials for cNF and other diseases in the skin. Discussions of these data resulted in formulation of a list of priority issues to address in order to develop efficient and effective clinical trials for cNF. RESULTS: The subgroup identified 2 natural history studies of cNF, 4 priority outcome measures, and 6 patient-reported outcome tools for potential use in efficacy trials of cNF. Time to initiate intervention, patient eligibility, mechanism of action, route of administration, safety monitoring, and regulatory agency interactions were identified as key factors to consider when designing clinical trials for cNF. CONCLUSIONS: Alignment on endpoints and methods for the measurement and quantification of cNF represent a priority for therapeutic development for cNF. Advances in technological methods and outcome tools utilized in other skin diseases may be applicable to cNF studies. Patient age is an important factor guiding trial design and clinical development path.


Subject(s)
Clinical Trials as Topic/methods , Neurofibroma/therapy , Research Design , Skin Neoplasms/therapy , Humans , Outcome Assessment, Health Care , Patient Reported Outcome Measures
4.
Am Heart J ; 164(6): 846-55, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23194484

ABSTRACT

The ability to make informed benefit-risk assessments for potentially cardiotoxic new compounds is of considerable interest and importance at the public health, drug development, and individual patient levels. Cardiac imaging approaches in the evaluation of drug-induced myocardial dysfunction will likely play an increasing role. However, the optimal choice of myocardial imaging modality and the recommended frequency of monitoring are undefined. These decisions are complicated by the array of imaging techniques, which have varying sensitivities, specificities, availabilities, local expertise, safety, and costs, and by the variable time-course of tissue damage, functional myocardial depression, or recovery of function. This White Paper summarizes scientific discussions of members of the Cardiac Safety Research Consortium on the main factors to consider when selecting nonclinical and clinical cardiac function imaging techniques in drug development. We focus on 3 commonly used imaging modalities in the evaluation of cardiac function: echocardiography, magnetic resonance imaging, and radionuclide (nuclear) imaging and highlight areas for future research.


Subject(s)
Cardiac Imaging Techniques , Cardiomyopathies/diagnosis , Cardiovascular Agents/adverse effects , Cardiomyopathies/chemically induced , Echocardiography , Humans , Magnetic Resonance Imaging , Radionuclide Angiography , Risk Assessment
5.
J Clin Pharmacol ; 48(6): 662-70, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18378963

ABSTRACT

Predicting clinically significant drug interactions during drug development is a challenge for the pharmaceutical industry and regulatory agencies. Since the publication of the US Food and Drug Administration's (FDA's) first in vitro and in vivo drug interaction guidance documents in 1997 and 1999, researchers and clinicians have gained a better understanding of drug interactions. This knowledge has enabled the FDA and the industry to progress and begin to overcome these challenges. The FDA has continued its efforts to evaluate methodologies to study drug interactions and communicate recommendations regarding the conduct of drug interaction studies, particularly for CYP-based and transporter-based drug interactions, to the pharmaceutical industry. A drug interaction Web site was established to document the FDA's current understanding of drug interactions (http://www.fda.gov/cder/drug/drugInteractions/default.htm). This report provides an overview of the evolution of the drug interaction guidances, includes a synopsis of the steps taken by the FDA to revise the original drug interaction guidance documents, and summarizes and highlights updated sections in the current guidance document, Drug Interaction Studies-Study Design, Data Analysis, and Implications for Dosing and Labeling.


Subject(s)
Drug Design , Drug Interactions , Guidelines as Topic , Biological Transport/drug effects , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/metabolism , Humans , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...