Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 7(19): 2001467, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33042758

ABSTRACT

Extracellular particles (EPs) including extracellular vesicles (EVs) and exomeres play significant roles in diseases and therapeutic applications. However, their spatiotemporal dynamics in vivo have remained largely unresolved in detail due to the lack of a suitable method. Therefore, a bioluminescence resonance energy transfer (BRET)-based reporter, PalmGRET, is created to enable pan-EP labeling ranging from exomeres (<50 nm) to small (<200 nm) and medium and large (>200 nm) EVs. PalmGRET emits robust, sustained signals and allows the visualization, tracking, and quantification of the EPs from whole animal to nanoscopic resolutions under different imaging modalities, including bioluminescence, BRET, and fluorescence. Using PalmGRET, it is shown that EPs released by lung metastatic hepatocellular carcinoma (HCC) exhibit lung tropism with varying distributions to other major organs in immunocompetent mice. It is further demonstrated that gene knockdown of lung-tropic membrane proteins, solute carrier organic anion transporter family member 2A1, alanine aminopeptidase/Cd13, and chloride intracellular channel 1 decreases HCC-EP distribution to the lungs and yields distinct biodistribution profiles. It is anticipated that EP-specific imaging, quantitative assays, and detailed in vivo characterization are a starting point for more accurate and comprehensive in vivo models of EP biology and therapeutic design.

2.
Nat Nanotechnol ; 14(12): 1160-1169, 2019 12.
Article in English | MEDLINE | ID: mdl-31740794

ABSTRACT

Abnormal tumour vasculature has a significant impact on tumour progression and response to therapy. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis and, thus, can be delivered to normalize tumour vasculature. However, a NO-delivery system with a prolonged half-life and a sustained release mechanism is currently lacking. Here we report the development of NanoNO, a nanoscale carrier that enables sustained NO release to efficiently deliver NO into hepatocellular carcinoma. Low-dose NanoNO normalizes tumour vessels and improves the delivery and effectiveness of chemotherapeutics and tumour necrosis factor-related, apoptosis-inducing, ligand-based therapy in both primary tumours and metastases. Furthermore, low-dose NanoNO reprogrammes the immunosuppressive tumour microenvironment toward an immunostimulatory phenotype, thereby improving the efficacy of cancer vaccine immunotherapy. Our findings demonstrate the ability of nanoscale NO delivery to efficiently reprogramme tumour vasculature and immune microenvironments to overcome resistance to cancer therapy, resulting in a therapeutic benefit.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Delayed-Action Preparations/chemistry , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Neovascularization, Pathologic/drug therapy , Nitric Oxide/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Animals , Carcinoma, Hepatocellular/blood supply , Humans , Liver Neoplasms/blood supply , Male , Mice , Nitric Oxide/therapeutic use , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...