Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microsyst Nanoeng ; 9: 127, 2023.
Article in English | MEDLINE | ID: mdl-37829159

ABSTRACT

For simultaneous and quantitative thermophysical measurements of ultrasmall liquid volumes, we have recently developed and reported heated fluidic resonators (HFRs). In this paper, we improve the precision of HFRs in a vacuum by significantly reducing the thermal loss around the sensing element. A vacuum chamber with optical, electrical, and microfluidic access is custom-built to decrease the convection loss by two orders of magnitude under 10-4 mbar conditions. As a result, the measurement sensitivities for thermal conductivity and specific heat capacity are increased by 4.1 and 1.6 times, respectively. When differentiating between deionized water (H2O) and heavy water (D2O) with similar thermophysical properties and ~10% different mass densities, the signal-to-noise ratio (property differences over standard error) for H2O and D2O is increased by 9 and 5 times for thermal conductivity and specific heat capacity, respectively.

2.
J Agric Food Chem ; 71(3): 1748-1757, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36647270

ABSTRACT

Spirodela polyrhiza (Araceae family) is a duckweed species that serves as a potential resource for feed, food, bioremediation, and pharmaceutical applications. In this study, we assessed the effects of different concentrations of melatonin (0, 0.1, 1, and 10 µM) on the growth of S. polyrhiza during in vitro culture and the metabolic profiles and productivities of useful metabolites using gas chromatography-mass spectrometry coupled with multivariable statistical analysis. We found that exogenous melatonin significantly improved the total dry weight and altered the metabolic profiles of S. polyrhiza cultures. Melatonin significantly enhanced the cellular production of useful metabolites, such as γ-aminobutyric acid, dopamine, threonine, valine, and phytosterols. The volumetric productivities (mg/L) of γ-aminobutyric acid, dopamine, campesterol, ß-sitosterol, and stigmasterol were the highest in the presence of 10 µM melatonin on day 12. Moreover, the productivities of ascorbic acid and serotonin were the highest in the presence of 1 µM melatonin on day 12. Therefore, melatonin could be used to enhance the production of biomass and useful metabolites during large-scale S. polyrhiza cultivation in cosmetic, food/feed, and pharmaceutical industries.


Subject(s)
Araceae , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Dopamine/metabolism , Araceae/metabolism , Biodegradation, Environmental , gamma-Aminobutyric Acid/metabolism
3.
Metabolites ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36355095

ABSTRACT

Rice (Oryza sativa L.) is a widely consumed food source, and its geographical origin has long been a subject of discussion. In our study, we collected 44 and 20 rice samples from different regions of the Republic of Korea and China, respectively, of which 35 and 29 samples were of white and brown rice, respectively. These samples were analyzed using nuclear magnetic resonance (NMR) spectroscopy, followed by analyses with various data normalization and scaling methods. Then, leave-one-out cross-validation (LOOCV) and external validation were employed to evaluate various machine learning algorithms. Total area normalization, with unit variance and Pareto scaling for white and brown rice samples, respectively, was determined as the best pre-processing method in orthogonal partial least squares-discriminant analysis. Among the various tested algorithms, support vector machine (SVM) was the best algorithm for predicting the geographical origin of white and brown rice, with an accuracy of 0.99 and 0.96, respectively. In external validation, the SVM-based prediction model for white and brown rice showed good performance, with an accuracy of 1.0. The results of this study suggest the potential application of machine learning techniques based on NMR data for the differentiation and prediction of diverse geographical origins of white and brown rice.

4.
BMC Plant Biol ; 22(1): 545, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434529

ABSTRACT

BACKGROUND: Lemna species are cosmopolitan floating plants that have great application potential in the food/feed, pharmaceutical, phytoremediation, biofuel, and bioplastic industries. In this study, the effects of exogenous melatonin (0.1, 1, and 10 µM) on the growth and production of various bioactive metabolites and intact lipid species were investigated in Lemna aequinoctialis culture. RESULTS: Melatonin treatment significantly enhanced the growth (total dry weight) of the Lemna aequinoctialis culture. Melatonin treatment also increased cellular production of metabolites including ß-alanine, ascorbic acid, aspartic acid, citric acid, chlorophyll, glutamic acid, phytosterols, serotonin, and sucrose, and intact lipid species; digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylinositols, and sulfoquinovosyldiacylglycerols. Among those metabolites, the productivity of campesterol (1.79 mg/L) and stigmasterol (10.94 mg/L) were the highest at day 28, when 10 µM melatonin was treated at day 7. CONCLUSION: These results suggest that melatonin treatment could be employed for enhanced production of biomass or various bioactive metabolites and intact lipid species in large-scale L. aequinoctialis cultivation as a resource for food, feed, and pharmaceutical industries.


Subject(s)
Araceae , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Lipidomics , Biodegradation, Environmental , Lipids
5.
Nano Lett ; 22(19): 7768-7775, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35980246

ABSTRACT

Micro/nanochannel resonators have been used to measure cells, suspended nanoparticles, or liquids, primarily at or near room temperature while their high temperature operation can offer promising applications such as calorimetric measurements and thermogravimetric analysis. To date, global electrothermal or local photothermal heating mechanisms have been attempted for channel resonators, but both approaches are intrinsically limited by a narrow temperature modulation range, slow heating/cooling, less quantitative heating, or time-consuming optical alignment. Here, we introduce heater-integrated fluidic resonators (HFRs) that enable fast, quantitative, alignment-free, and wide-range temperature modulation and simultaneously offer resistive thermometry and resonant densitometry. HFRs with or without a dispensing nozzle are fabricated, thoroughly characterized, and used for high throughput thermophysical properties measurements, microchannel boiling studies, and atomized spray dispensing. The HFR, without a doubt, opens a new avenue for nanoscale thermal analysis and processing and further encourages the integration of additional functions into channel resonators.


Subject(s)
Nanoparticles , Thermometry , Humans , Heating , Nanoparticles/chemistry , Temperature
6.
Biomed Eng Lett ; 12(2): 217, 2022 May.
Article in English | MEDLINE | ID: mdl-35529344

ABSTRACT

[This corrects the article DOI: 10.1007/s13534-021-00207-7.].

7.
Polymers (Basel) ; 13(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34883605

ABSTRACT

We herein report transparent self-cleaning coatings based on polyimide-fluorinated silica sol (PIFSS) nanocomposite. Polyamic acid-silica sol (PASS) suspensions were synthesized by adding four different amounts of a silica sol suspension to each end-capped polyamic acid solution. The PASS suspensions were spin-coated on glass slides, thermally imidized and treated with triethoxy-1H,1H,2H,2H-perfluorodecylsilane (TEFDS) to prepare PIFSS coatings. The PIFSS coatings showed high resistance to separation from glass substrates and thermal stability. Furthermore, the PIFSS coatings on the glass substrate could be cleanly removed using polar aprotic solvents and repeated coating was possible. As the amount of silica sol particles in the PIFSS coating was increased, the hydrophobic contact angle increased. Among them, PIFSS-10 and PIFSS-15 coatings showed nearly superhydrophobic contact angles (144° and 148°, respectively) and good self-cleaning property. It was confirmed by SEM and AFM studies that their hydrophobic and self-cleaning properties are due to uniform particle distribution and relatively high surface roughness. PIFSS-10 coating showed a high transmittance value (88%) at 550 nm and good self-cleaning property, therefore suitable as a transparent self-cleaning coating. The advantages of the coating are that the fabrication process is simple, and the substrate is reusable. The PIFSS coating is expected to be applied in solar cell panels, windows, lenses and safety goggles.

8.
Biomed Eng Lett ; 11(4): 367-382, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34616583

ABSTRACT

Suspended microchannel resonators (SMRs) have been developed to measure the buoyant mass of single micro-/nanoparticles and cells suspended in a liquid. They have significantly improved the mass resolution with the aid of vacuum packaging and also increased measurement throughput by fast resonance frequency tracking while target objects travel through the microchannel without stopping or even slowing down. Since their invention, various biological applications have been enabled, including simultaneous measurements of cell growth and cell cycle progression, and measurements of disease associated physicochemical change, to name a few. Extension and advancement towards other promising applications with SMRs are continuously ongoing by adding multiple functionalities or incorporating other complementary analytical metrologies. In this paper, we will thoroughly review the development history, basic and advanced operations, and key applications of SMRs to introduce them to researchers working in biological and biomedical sciences who mostly rely on classical and conventional methodologies. We will also provide future perspectives and projections for SMR technologies.

9.
Front Neurosci ; 15: 766781, 2021.
Article in English | MEDLINE | ID: mdl-34975376

ABSTRACT

We describe the utility of a standardized index (Z-score) in quantitative EEG (QEEG) capable of when referenced to a resting-state, sex- and age-differentiated QEEG normative database (ISB-NormDB). Our ISB-NormDB comprises data for 1,289 subjects (553 males, 736 females) ages 4.5 to 81 years that met strict normative data criteria. A de-noising process allowed stratification based on QEEG variability between normal healthy men and women at various age ranges. The ISB-NormDB data set that is stratified by sex provides a unique, highly accurate ISB-NormDB model (ISB-NormDB: ISB-NormDB-Male, ISB-NormDB-Female). To evaluate the trends and accuracy of the ISB-NormDB, we used actual data to compare Z-scores obtained through the ISB-NormDB with those obtained through a traditional QEEG normative database to confirm that basic trends are maintained in most bands and are sensitive to abnormal test data. Finally, we demonstrate the value of our standardized index of QEEG, and highlight it's capacity to minimize the confounding variables of sex and age in any analysis.

10.
ACS Appl Mater Interfaces ; 12(21): 24308-24318, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32356648

ABSTRACT

Accurate and portable gas sensors are required for environmental monitoring, locating leakages, and detecting trace chemical vapors or gases. Although many sensors have been developed, few can rapidly and selectively detect parts per million (ppm) concentration changes. In this work, we fabricate multimodal gas sensors by depositing a single nanocomposite fiber between the prongs of a quartz tuning fork (QTF). The resulting sensors are portable and integrate multimodal approaches by applying both chemo-mechanical sensing for sensitivity and electrochemical sensing for selectivity. Near-field electrospinning (NFES) produces a flexible and semiconductive nanocomposite fiber with ∼500 nm diameter that can be integrated into electronic systems as environmental gas sensors. Intense pulsed light (IPL) and sputter coating improve adhesion of the nanocomposite fiber onto a QTF. Furthermore, IPL offers improved sensing performance due to the higher specific surface area and reduction in polymer content. In this study, hydrogen gas (H2) is chosen as a target gas since it is a common energy source in fuel cell applications and byproduct in chemical reactions. An electrospinning solution containing polyaniline, multiwalled carbon nanotubes, and platinum nanoparticles is used to test H2 gas sensing performance. The resulting multimodal sensors are selective to hydrogen versus other gases and vapors including methane, hexane, toluene, ammonia, ethanol, carbon dioxide, and oxygen. Furthermore, the sensors detect ppm levels of hydrogen gas even in the presence of high humidity that typically hinders gas sensor performance. The development of this sensor leads to a new method for compact and portable multimodal gas sensing.

11.
ACS Sens ; 4(12): 3275-3282, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31762257

ABSTRACT

This paper reports micropipette resonators, mechanical resonator-integrated micropipettes, which enable selective aspiration and mass measurement of particles or cells suspended in liquids with two orthogonal vibration modes. A custom pipette pulling system is built to provide power-modulated linear heating on a rotating glass capillary to make an asymmetric cross section with extended uniformity.A glass capillary is stretched with the custom puller, cut within the pulled region, polished, mounted on a machined metallic jig, and then coated with a metal. As a result, a doubly clamped tube resonator-integrated micropipette is made. For simultaneous frequency readouts of two orthogonal modes, an optical pickup, originally developed for optical data storage, is configured closely above and properly aligned to the micropipette resonator and two digital phase-locked loops are employed. For mass responsivity calibration, frequency shifts of the micropipette resonator are measured with various liquids and glass microparticles. Buoyant masses of unicellular organisms, Paramecium aurelia, freely swimming in a culture dish are successfully measured with two orthogonal modes.


Subject(s)
Calcium Compounds/chemistry , Equipment and Supplies , Oxides/chemistry , Paramecium aurelia/chemistry , Sodium Hydroxide/chemistry , Weights and Measures/instrumentation , Equipment Design , Paramecium aurelia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...