Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cells ; 47(5): 100067, 2024 May.
Article in English | MEDLINE | ID: mdl-38723947

ABSTRACT

The main cause of death in lung cancer patients is metastasis. Thus, efforts to suppress micrometastasis or distant metastasis in lung cancer, identify therapeutic targets and develop related drugs are ongoing. In this study, we identified SET and MYND domain-containing protein 5 (SMYD5) as a novel metastasis regulator in lung cancer and found that SMYD5 was overexpressed in lung cancer based on both RNA-sequencing analysis results derived from the TCGA portal and immunohistochemical analysis results; knockdown of SMYD5 inhibited cell migration and invasion by changing epithelial-mesenchymal transition markers and MMP9 expression in NCI-H1299 and H1703 cell lines. Additionally, SMYD5 knockdown increased Src homology 2-b3 expression by decreasing the level of H4K20 trimethylation. Furthermore, in an in vitro epithelial-mesenchymal transition system using TGF-ß treatment, SMYD5 knockdown resulted in reduced cell migration and invasion in the highly invasive NCI-H1299 and H1703 cell lines. Based on these findings, we propose that SMYD5 could serve as a potential therapeutic target for lung cancer treatment and that cotreatment with an SMYD5 inhibitor and chemotherapy may enhance the therapeutic effect of lung cancer treatment.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Lung Neoplasms , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...