Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 14810, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30287874

ABSTRACT

Polycrystalline cadmium telluride (CdTe) X-ray photodetector with advanced performance was fabricated in a Schottky diode form by direct thermal deposition (evaporation) on pixelized complementary metal oxide semiconductor (CMOS) readout panel. Our CdTe X-ray detector shows such a variety of benefits as relatively low process temperature, low cost, low operation voltage less than 40 V, and higher sensitivity and spatial resolution than those of commercial a-Se detectors. CdTe has cubic Zinc Blende structure and maintains p-type conduction after growth in general. For low voltage operation, we succeeded in Cl doping at all stage of CdTe film deposition, and as a result, hole concentration of p-type CdTe was reduced to ~1012 cm-3 from ~1015 cm-3, and such concentration reduction could enable our Schottky diode with Ti electrode to operate at a reverse bias of less than 40 V. Our CdTe Schottky diode/CMOS pixel array as a direct conversion type imager demonstrates much higher resolution X-ray imaging in 7 × 9 cm2 large scale than that of CsI/CMOS array, an indirect conversion imager. To our limited knowledge, our results on polycrystalline CdTe Schottky diode/CMOS array would be very novel as a first demonstration of active pixel sensor system equipped with directly deposited large scale X-ray detector.

2.
ACS Appl Mater Interfaces ; 10(4): 4206-4212, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29318882

ABSTRACT

The two-dimensional transition-metal dichalcogenide semiconductor MoS2 has received extensive attention for decades because of its outstanding electrical and mechanical properties for next-generation devices. One weakness of MoS2, however, is that it shows only n-type conduction, revealing its limitations for homogeneous PN diodes and complementary inverters. Here, we introduce a charge-transfer method to modify the conduction property of MoS2 from n- to p-type. We initially deposited an n-type InGaZnO (IGZO) film on top of the MoS2 flake so that electron charges might be transferred from MoS2 to IGZO during air ambient annealing. As a result, electron charges were depleted in MoS2. Such charge depletion lowered the MoS2 Fermi level, which makes hole conduction favorable in MoS2 when optimum source/drain electrodes with a high work function are selected. Our IGZO-supported MoS2 flake field effect transistors (FETs) clearly display channel-type conversion from n- to p-channel in this way. Under short- and long-annealing conditions, n- and p-channel MoS2 FETs are achieved, respectively, and a low-voltage complementary inverter is demonstrated using both channels in a single MoS2 flake.

3.
RSC Adv ; 8(6): 2837-2843, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-35541189

ABSTRACT

Despite their huge impact on future electronics, two-dimensional (2D) dichalcogenide semiconductor (TMD) based transistors suffer from the hysteretic characteristics induced by the defect traps located at the dielectric/TMD channel interface. Here, we introduce a hydroxyl-group free organic dielectric divinyl-tetramethyldisiloxane-bis (benzocyclobutene) (BCB) between the channel and conventional SiO2 dielectric, to practically resolve such issues. Our results demonstrate that the electrical hysteresis in the n-channel MoS2 and p-channel MoTe2 transistors were significantly reduced to less than ∼20% of initial value after being treated with hydrophobic BCB dielectric while their mobilities increased by factor of two. Such improvements are certainly attributed to the use of the hydroxyl-group free organic dielectric, since high density interface traps are related to hydroxyl-groups located on hydrophilic SiO2. This concept of interface trap reduction is extended to stable low voltage operation in 2D MoTe2 FET with 30 nm BCB/10 nm Al2O3 bilayer dielectric, which operates well at 1 V. We conclude that the interface engineering employing the BCB dielectric offers practical benefits for the high performance and stable operation of TMD-based transistors brightening the future of 2D TMD electronics.

4.
ACS Appl Mater Interfaces ; 9(18): 15592-15598, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28436650

ABSTRACT

We report the fabrication of hybrid PN junction diode and complementary (CMOS) inverters, where 2D p-type MoTe2 and n-type thin film InGaZnO (IGZO) are coupled for each device process. IGZO thin film was initially patterned by conventional photolithography either for n-type material in a PN diode or for n-channel of top-gate field-effect transistors (FET) in CMOS inverter. The hybrid PN junction diode shows a good ideality factor of 1.57 and quite a high ON/OFF rectification ratio of ∼3 × 104. Under photons, our hybrid PN diode appeared somewhat stable only responding to high-energy photons of blue and ultraviolet. Our 2D nanosheet-oxide film hybrid CMOS inverter exhibits voltage gains as high as ∼40 at 5 V, low power consumption less than around a few nW at 1 V, and ∼200 µs switching dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...