Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 17(9): e1009302, 2021 09.
Article in English | MEDLINE | ID: mdl-34520464

ABSTRACT

A continuing challenge in modern medicine is the identification of safer and more efficacious drugs. Precision therapeutics, which have one molecular target, have been long promised to be safer and more effective than traditional therapies. This approach has proven to be challenging for multiple reasons including lack of efficacy, rapidly acquired drug resistance, and narrow patient eligibility criteria. An alternative approach is the development of drugs that address the overall disease network by targeting multiple biological targets ('polypharmacology'). Rational development of these molecules will require improved methods for predicting single chemical structures that target multiple drug targets. To address this need, we developed the Multi-Targeting Drug DREAM Challenge, in which we challenged participants to predict single chemical entities that target pro-targets but avoid anti-targets for two unrelated diseases: RET-based tumors and a common form of inherited Tauopathy. Here, we report the results of this DREAM Challenge and the development of two neural network-based machine learning approaches that were applied to the challenge of rational polypharmacology. Together, these platforms provide a potentially useful first step towards developing lead therapeutic compounds that address disease complexity through rational polypharmacology.


Subject(s)
Drug Development , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Tauopathies/drug therapy , Humans , Neoplasms/metabolism , Neural Networks, Computer , Polypharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , tau Proteins/genetics , tau Proteins/metabolism
2.
Bioinformatics ; 35(24): 5249-5256, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31116384

ABSTRACT

MOTIVATION: Traditional drug discovery approaches identify a target for a disease and find a compound that binds to the target. In this approach, structures of compounds are considered as the most important features because it is assumed that similar structures will bind to the same target. Therefore, structural analogs of the drugs that bind to the target are selected as drug candidates. However, even though compounds are not structural analogs, they may achieve the desired response. A new drug discovery method based on drug response, which can complement the structure-based methods, is needed. RESULTS: We implemented Siamese neural networks called ReSimNet that take as input two chemical compounds and predicts the CMap score of the two compounds, which we use to measure the transcriptional response similarity of the two compounds. ReSimNet learns the embedding vector of a chemical compound in a transcriptional response space. ReSimNet is trained to minimize the difference between the cosine similarity of the embedding vectors of the two compounds and the CMap score of the two compounds. ReSimNet can find pairs of compounds that are similar in response even though they may have dissimilar structures. In our quantitative evaluation, ReSimNet outperformed the baseline machine learning models. The ReSimNet ensemble model achieves a Pearson correlation of 0.518 and a precision@1% of 0.989. In addition, in the qualitative analysis, we tested ReSimNet on the ZINC15 database and showed that ReSimNet successfully identifies chemical compounds that are relevant to a prototype drug whose mechanism of action is known. AVAILABILITY AND IMPLEMENTATION: The source code and the pre-trained weights of ReSimNet are available at https://github.com/dmis-lab/ReSimNet. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neural Networks, Computer , Software , Drug Discovery , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...