Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927803

ABSTRACT

Screening is critical for prevention and early detection of cervical cancer but it is time-consuming and laborious. Supervised deep convolutional neural networks have been developed to automate pap smear screening and the results are promising. However, the interest in using only normal samples to train deep neural networks has increased owing to the class imbalance problems and high-labeling costs that are both prevalent in healthcare. In this study, we introduce a method to learn explainable deep cervical cell representations for pap smear cytology images based on one-class classification using variational autoencoders. Findings demonstrate that a score can be calculated for cell abnormality without training models with abnormal samples, and we localize abnormality to interpret our results with a novel metric based on absolute difference in cross-entropy in agglomerative clustering. The best model that discriminates squamous cell carcinoma (SCC) from normals gives 0.908±0.003 area under operating characteristic curve (AUC) and one that discriminates high-grade epithelial lesion (HSIL) 0.920±0.002 AUC. Compared to other clustering methods, our method enhances the V-measure and yields higher homogeneity scores, which more effectively isolate different abnormality regions, aiding in the interpretation of our results. Evaluation using an external dataset shows that our model can discriminate abnormality without the need for additional training of deep models.

2.
Life (Basel) ; 14(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255705

ABSTRACT

Tumor microenvironment (TME) plays a pivotal role in immuno-oncology, which investigates the intricate interactions between tumors and the human immune system. Specifically, tumor-infiltrating lymphocytes (TILs) are crucial biomarkers for evaluating the prognosis of breast cancer patients and have the potential to refine immunotherapy precision and accurately identify tumor cells in specific cancer types. In this study, we conducted tissue segmentation and lymphocyte detection tasks to predict TIL scores by employing self-supervised learning (SSL) model-based approaches capable of addressing limited labeling data issues. Our experiments showed a 1.9% improvement in tissue segmentation and a 2% improvement in lymphocyte detection over the ImageNet pre-training model. Using these SSL-based models, we achieved a TIL score of 0.718 with a 4.4% improvement. In particular, when trained with only 10% of the entire dataset, the SwAV pre-trained model exhibited a superior performance over other models. Our work highlights improved tissue segmentation and lymphocyte detection using the SSL model with less labeled data for TIL score prediction.

3.
Medicina (Kaunas) ; 59(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36984536

ABSTRACT

Background and objectives: Telomerase reverse transcriptase (TERT) promoter mutation, found in a subset of patients with thyroid cancer, is strongly associated with aggressive biologic behavior. Predicting TERT promoter mutation is thus necessary for the prognostic stratification of thyroid cancer patients. Materials and Methods: In this study, we evaluate TERT promoter mutation status in thyroid cancer through the deep learning approach using histologic images. Our analysis included 13 consecutive surgically resected thyroid cancers with TERT promoter mutations (either C228T or C250T) and 12 randomly selected surgically resected thyroid cancers with a wild-type TERT promoter. Our deep learning model was created using a two-step cascade approach. First, tumor areas were identified using convolutional neural networks (CNNs), and then TERT promoter mutations within tumor areas were predicted using the CNN-recurrent neural network (CRNN) model. Results: Using the hue-saturation-value (HSV)-strong color transformation scheme, the overall experiment results show 99.9% sensitivity and 60% specificity (improvements of approximately 25% and 37%, respectively, compared to image normalization as a baseline model) in predicting TERT mutations. Conclusions: Highly sensitive screening for TERT promoter mutations is possible using histologic image analysis based on deep learning. This approach will help improve the classification of thyroid cancer patients according to the biologic behavior of tumors.


Subject(s)
Deep Learning , Telomerase , Thyroid Neoplasms , Humans , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/genetics , Promoter Regions, Genetic
4.
J Digit Imaging ; 32(3): 450-461, 2019 06.
Article in English | MEDLINE | ID: mdl-30680471

ABSTRACT

Highly accurate detection of the intracranial hemorrhage without delay is a critical clinical issue for the diagnostic decision and treatment in an emergency room. In the context of a study on diagnostic accuracy, there is a tradeoff between sensitivity and specificity. In order to improve sensitivity while preserving specificity, we propose a cascade deep learning model constructed using two convolutional neural networks (CNNs) and dual fully convolutional networks (FCNs). The cascade CNN model is built for identifying bleeding; hereafter the dual FCN is to detect five different subtypes of intracranial hemorrhage and to delineate their lesions. Using a total of 135,974 CT images including 33,391 images labeled as bleeding, each of CNN/FCN models was trained separately on image data preprocessed by two different settings of window level/width. One is a default window (50/100[level/width]) and the other is a stroke window setting (40/40). By combining them, we obtained a better outcome on both binary classification and segmentation of hemorrhagic lesions compared to a single CNN and FCN model. In determining whether it is bleeding or not, there was around 1% improvement in sensitivity (97.91% [± 0.47]) while retaining specificity (98.76% [± 0.10]). For delineation of bleeding lesions, we obtained overall segmentation performance at 80.19% in precision and 82.15% in recall which is 3.44% improvement compared to using a single FCN model.


Subject(s)
Deep Learning , Intracranial Hemorrhages/diagnostic imaging , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...