Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904442

ABSTRACT

Estradiol, a phenolic steroid oestrogen, is one of the endocrine-disrupting chemicals (EDCs) found in natural and tap waters. The detection and removal of EDCs is attracting attention daily as they negatively affect animals' and humans' endocrine functions and physiological conditions. Therefore, developing a fast and practical method for the selective removal of EDCs from waters is essential. In this study, we prepared 17ß-estradiol (E2)-imprinted HEMA-based nanoparticles onto bacterial cellulose nanofibres (E2-NP/BC-NFs) to use for the removal of E2 from wastewater. FT-IR and NMR confirmed the structure of the functional monomer. The composite system was characterised by BET, SEM, µCT, contact angle, and swelling tests. Additionally, the non-imprinted bacterial cellulose nanofibres (NIP/BC-NFs) were prepared to compare the results of E2-NP/BC-NFs. Adsorption of E2 from aqueous solutions was performed in batch mode and investigated via several parameters for optimisation conditions. The effect of pH studies was examined in the 4.0-8.0 range using acetate and phosphate buffers and a concentration of E2 of 0.5 mg/mL. The maximum E2 adsorption amount was 254 µg/g phosphate buffer at 45 °C. The experimental data show that the Langmuir is a relevant isotherm model for E2 adsorption. Additionally, the relevant kinetic model was the pseudo-second-order kinetic model. It was observed that the adsorption process reached equilibrium in less than 20 min. The E2 adsorption decreased with the increase in salt at varying salt concentrations. The selectivity studies were performed using cholesterol and stigmasterol as competing steroids. The results show that E2 is 46.0 times more selective than cholesterol and 21.0 times more selective than stigmasterol. According to the results, the relative selectivity coefficients for E2/cholesterol and E2/stigmasterol were 8.38 and 86.6 times greater for E2-NP/BC-NFs than for E2-NP/BC-NFs, respectively. The synthesised composite systems were repeated ten times to assess the reusability of E2-NP/BC-NFs.

2.
J Hazard Mater ; 192(3): 1819-26, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21813236

ABSTRACT

The selective removal of 17ß-estradiol (E2) was investigated by using molecularly E2 imprinted (MIP) particle embedded poly(hydroxyethyl methacrylate) (PHEMA) cryogel. PHEMA/MIP composite cryogel was characterized by FTIR, SEM, swelling studies, and surface area measurements. E2 adsorption studies were performed by using aqueous solutions which contain various amounts of E2. The specificity of PHEMA/MIP cryogel to recognition of E2 was performed by using cholesterol and stigmasterol. PHEMA/MIP cryogel exhibited a high binding capacity (5.32 mg/gpolymer) and high selectivity for E2 in the presence of competitive molecules, cholesterol (k(E2/cholesterol) = 7.6) and stigmasterol (k(E2/Stigmasterol) = 85.8). There is no significant decrease in adsorption capacity after several adsorption-desorption cycles.


Subject(s)
Cryogels/chemistry , Estradiol/analysis , Molecular Imprinting/methods , Polyhydroxyethyl Methacrylate/chemistry , Adsorption , Chemistry Techniques, Analytical , Cholesterol/chemistry , Esters/chemistry , Humans , Microscopy, Electron, Scanning/methods , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Stigmasterol/chemistry , Surface Properties , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...