Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 63(4): 1029-39, 2011.
Article in English | MEDLINE | ID: mdl-22001991

ABSTRACT

We investigated the effects of LASSBio-998 (L-998), a compound designed to be a p38 MAPK (mitogen-activated protein kinase) inhibitor, on lipopolysaccharide (LPS)-induced acute lung inflammation in vivo. BALB/c mice were challenged with aerosolized LPS inhalation (0.5 mg/ml) 4 h after oral administration of L-998. Three hours after LPS inhalation, bronchoalveolar lavage fluid was obtained to measure the levels of the proinflammatory cytokines TNF-α (tumor necrosis factor-α) and IL-1 (interleukin-1) and the chemokines MCP-1 (monocyte chemoattractant protein-1) and KC (keratinocyte chemoattractant). In addition, neutrophil infiltration and p38 MAPK phosphorylation was measured. L-998 inhibited LPS-induced production of TNF-α and IL-1ß and did not alter KC and MCP-1 levels. Furthermore, L-998 also significantly decreased neutrophil accumulation in lung tissues. As expected, L-998 diminished p38 MAPK phosphorylation and reduced acute lung inflammation. Inhibition of p38 MAPK phosphorylation by L-998 was also demonstrated in LPS-challenged murine C57BL/6 peritoneal macrophages in vitro, with concentration-dependent effects. L-998 suppressed LPS-induced lung inflammation, most likely by inhibition of the cytokine-p38 MAPK pathway, and we postulate that L-998 could be a clinically relevant anti-inflammatory drug candidate.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Quinolines/pharmacology , Urea/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/administration & dosage , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Dose-Response Relationship, Drug , In Vitro Techniques , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Lung/drug effects , Lung/pathology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism , Phosphorylation/drug effects , Quinolines/administration & dosage , Urea/administration & dosage
2.
J Leukoc Biol ; 82(3): 488-96, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17540734

ABSTRACT

We have demonstrated recently that the glycoinositolphospholipid (GIPL) molecule from the protozoan Trypanosoma cruzi is a TLR4 agonist with proinflammatory effects. Here, we show that GIPL-induced neutrophil recruitment into the peritoneal cavity is mediated by at least two pathways: one, where IL-1beta acts downstream of TNF-alpha, and a second, which is IL-1beta- and TNFRI-independent. Moreover, NKT cells participate in this proinflammatory cascade, as in GIPL-treated CD1d(-/-) mice, TNF-alpha and MIP-2 levels are reduced significantly. As a consequence of this inflammatory response, spleen and lymph nodes of GIPL-treated mice have an increase in the percentage of T and B cells expressing the CD69 activation marker. Cell-transfer experiments demonstrate that T and B cell activation by GIPL is an indirect effect, which relies on the expression of TLR4 by other cell types. Moreover, although signaling through TNFRI contributes to the activation of B and gammadelta+ T cells, it is not required for increasing CD69 expression on alphabeta+ T lymphocytes. It is interesting that T cells are also functionally affected by GIPL treatment, as spleen cells from GIPL-injected mice show enhanced production of IL-4 following in vitro stimulation by anti-CD3. Together, these results contribute to the understanding of the inflammatory properties of the GIPL molecule, pointing to its potential role as a parasite-derived modulator of the immune response during T. cruzi infection.


Subject(s)
Glycolipids/physiology , Inflammation Mediators/physiology , Phospholipids/physiology , Toll-Like Receptor 4/metabolism , Trypanosoma cruzi/immunology , Animals , Antigens, CD1/genetics , Antigens, CD1/physiology , Antigens, CD1d , Chemokine CXCL2 , Chemokines/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Glycolipids/administration & dosage , Glycolipids/pharmacology , Immunity, Innate/genetics , Interleukin-1beta/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Phospholipids/administration & dosage , Phospholipids/pharmacology , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/physiology , T-Lymphocytes/metabolism , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...