Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1124305, 2023.
Article in English | MEDLINE | ID: mdl-36909430

ABSTRACT

Plant based natural products have been widely used as antibacterial and insect repellent agents globally. Because of growing resistance in bacterial plant pathogens and urban pests to current methods of control, combined with the long- and short-term negative impact of certain chemical controls in humans, non-target organisms, and the environment, finding alternative methods is necessary to prevent and/or mitigate losses caused by these pathogens and pests. The antibacterial and insect repellent activities of essential oils of novel cultivars of catnip (Nepeta cataria L. cv. CR9) and oregano (Origanum vulgare L. cv. Pierre) rich in the terpenes nepetalactone and carvacrol, respectively, were evaluated using the agar well diffusion assay and petri dish repellency assay. The essential oils exhibit moderate to high antibacterial activity against three plant pathogens, Pseudomonas cichorii, Pseudomonas syringae and Xanthomonas perforans of economic interest and the individual essential oils, their mixtures and carvacrol possess strong insect repellent activity against the common bed bug (Cimex lectularius L.), an urban pest of major significance to public health. In this study, the essential oils of catnip and oregano were determined to be promising candidates for further evaluation and development as antibacterial agents and plant-based insect repellents with applications in agriculture and urban pest management.

2.
Nature ; 609(7927): 535-540, 2022 09.
Article in English | MEDLINE | ID: mdl-36071164

ABSTRACT

Ocean eddies are coherent, rotating features that can modulate pelagic ecosystems across many trophic levels. These mesoscale features, which are ubiquitous at mid-latitudes1, may increase productivity of nutrient-poor regions2,3, accumulate prey4 and modulate habitat conditions in the water column5. However, in nutrient-poor subtropical gyres-the largest marine biome-the role of eddies in modulating behaviour throughout the pelagic predator community remains unknown despite predictions for these gyres to expand6 and pelagic predators to become increasingly important for food security7. Using a large-scale fishery dataset in the North Pacific Subtropical Gyre, we show a pervasive pattern of increased pelagic predator catch inside anticyclonic eddies relative to cyclones and non-eddy areas. Our results indicate that increased mesopelagic prey abundance in anticyclone cores4,8 may be attracting diverse predators, forming ecological hotspots where these predators aggregate and exhibit increased abundance. In this energetically quiescent gyre, we expect that isolated mesoscale features (and the habitat conditions in them) exhibit primacy over peripheral submesoscale dynamics in structuring the foraging opportunities of pelagic predators. Our finding that eddies influence coupling of epi- to mesopelagic communities corroborates the growing evidence that deep scattering layer organisms are vital prey for a suite of commercially important predator species9 and, thus, provide valuable ecosystem services.


Subject(s)
Ecosystem , Predatory Behavior , Water Movements , Water , Animals , Cyclonic Storms , Datasets as Topic , Fisheries , Food Chain , Nutrients/analysis , Pacific Ocean , Tropical Climate
3.
PLoS One ; 17(7): e0270930, 2022.
Article in English | MEDLINE | ID: mdl-35802686

ABSTRACT

Our changing climate poses growing challenges for effective management of marine life, ocean ecosystems, and human communities. Which species are most vulnerable to climate change, and where should management focus efforts to reduce these risks? To address these questions, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Climate Science Strategy called for vulnerability assessments in each of NOAA's ocean regions. The Pacific Islands Vulnerability Assessment (PIVA) project assessed the susceptibility of 83 marine species to the impacts of climate change projected to 2055. In a standard Rapid Vulnerability Assessment framework, this project applied expert knowledge, literature review, and climate projection models to synthesize the best available science towards answering these questions. Here we: (1) provide a relative climate vulnerability ranking across species; (2) identify key attributes and factors that drive vulnerability; and (3) identify critical data gaps in understanding climate change impacts to marine life. The invertebrate group was ranked most vulnerable and pelagic and coastal groups not associated with coral reefs were ranked least vulnerable. Sea surface temperature, ocean acidification, and oxygen concentration were the main exposure drivers of vulnerability. Early Life History Survival and Settlement Requirements was the most data deficient of the sensitivity attributes considered in the assessment. The sensitivity of many coral reef fishes ranged between Low and Moderate, which is likely underestimated given that reef species depend on a biogenic habitat that is extremely threatened by climate change. The standard assessment methodology originally developed in the Northeast US, did not capture the additional complexity of the Pacific region, such as the diversity, varied horizontal and vertical distributions, extent of coral reef habitats, the degree of dependence on vulnerable habitat, and wide range of taxa, including data-poor species. Within these limitations, this project identified research needs to sustain marine life in a changing climate.


Subject(s)
Climate Change , Ecosystem , Animals , Conservation of Natural Resources/methods , Coral Reefs , Hydrogen-Ion Concentration , Pacific Islands , Seawater
4.
Ecology ; 103(11): e3800, 2022 11.
Article in English | MEDLINE | ID: mdl-35726198

ABSTRACT

Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adult Awaous stamineus were freshwater residents (62% of n = 316 in 2009, 83% of n = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater-resident versus ocean-going larvae are plausible mechanisms for range-wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes in A. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.


Subject(s)
Perciformes , Rivers , Animals , Hawaii , Hydrodynamics , Fishes , Perciformes/genetics , Larva , Animal Migration
5.
Zootaxa ; 5214(2): 235-260, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37044905

ABSTRACT

Estimating stomatopod species diversity using morphology alone has long been difficult; though over 450 species have been described, new species are still being discovered regularly despite the cryptic behaviors of adults. However, the larvae of stomatopods are more easily obtained due to their pelagic habitat, and have been the focus of recent studies of diversity. Studies of morphological diversity describe both conserved and divergent traits in larval stomatopods, but generally cannot be linked to a particular species. Conversely, genetic studies of stomatopod larvae using DNA barcoding can be used to estimate species diversity, but are generally not linked to known species by analyses of morphological characters. Here we combine these two approaches, larval morphology and genetics, to estimate stomatopod species diversity in the Hawaiian Islands. Over 22 operational taxonomic units (OTUs) were identified genetically, corresponding to 20 characterized morphological types. Species from three major superfamilies of stomatopod were identified: Squilloidea (4 OTUs, 3 morphotypes), Gonodactyloidea (9, 8), and Lysiosquilloidea (6, 7). Among these, lysiosquilloids were more diverse based on larval morphotypes and OTUs as compared to previously documented Hawaiian species (3), while squilloids had a lower diversity of species represented by collected larvae as compared to the seven species previously documented. Two OTUs / morphotypes could not be identified to superfamily as their molecular and morphological features did not closely match any available information, suggesting they belong to poorly sampled superfamilies. The pseudosquillid, Pseudosquillana richeri, was discovered for the first time from Hawai'i. This study contributes an updated estimate for Hawaiian stomatopod diversity for a total of 24 documented species, provides references for identification of larval stomatopods across the three major superfamilies, and emphasizes the lack of knowledge of species diversity in more cryptic stomatopod superfamilies, such as Lysiosquilloidea.


Subject(s)
Crustacea , Ecosystem , Animals , Phylogeny , Hawaii , Larva/genetics , Larva/anatomy & histology , Crustacea/genetics
6.
Sci Rep ; 11(1): 3197, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542255

ABSTRACT

Most marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment. Here, we provide evidence that surface slicks, a common coastal convergence feature, provide nursery habitat for diverse marine larvae, including > 100 species of commercially and ecologically important fishes. The vast majority of invertebrate and larval fish taxa sampled had mean densities 2-110 times higher in slicks than in ambient water. Combining in-situ surveys with remote sensing, we estimate that slicks contain 39% of neustonic larval fishes, 26% of surface-dwelling zooplankton (prey), and 75% of floating organic debris (shelter) in our 1000 km2 study area in Hawai'i. Results indicate late-larval fishes actively select slick habitats to capitalize on concentrations of diverse prey and shelter. By providing these survival advantages, surface slicks enhance larval supply and replenishment of adult populations from coral reef, epipelagic, and deep-water ecosystems. Our findings suggest that slicks play a critically important role in enhancing productivity in tropical marine ecosystems.

7.
Proc Natl Acad Sci U S A ; 116(48): 24143-24149, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31712423

ABSTRACT

Life for many of the world's marine fish begins at the ocean surface. Ocean conditions dictate food availability and govern survivorship, yet little is known about the habitat preferences of larval fish during this highly vulnerable life-history stage. Here we show that surface slicks, a ubiquitous coastal ocean convergence feature, are important nurseries for larval fish from many ocean habitats at ecosystem scales. Slicks had higher densities of marine phytoplankton (1.7-fold), zooplankton (larval fish prey; 3.7-fold), and larval fish (8.1-fold) than nearby ambient waters across our study region in Hawai'i. Slicks contained larger, more well-developed individuals with competent swimming abilities compared to ambient waters, suggesting a physiological benefit to increased prey resources. Slicks also disproportionately accumulated prey-size plastics, resulting in a 60-fold higher ratio of plastics to larval fish prey than nearby waters. Dissections of hundreds of larval fish found that 8.6% of individuals in slicks had ingested plastics, a 2.3-fold higher occurrence than larval fish from ambient waters. Plastics were found in 7 of 8 families dissected, including swordfish (Xiphiidae), a commercially targeted species, and flying fish (Exocoetidae), a principal prey item for tuna and seabirds. Scaling up across an ∼1,000 km2 coastal ecosystem in Hawai'i revealed slicks occupied only 8.3% of ocean surface habitat but contained 42.3% of all neustonic larval fish and 91.8% of all floating plastics. The ingestion of plastics by larval fish could reduce survivorship, compounding threats to fisheries productivity posed by overfishing, climate change, and habitat loss.


Subject(s)
Fishes/physiology , Larva , Plastics/analysis , Water Pollutants, Chemical/analysis , Animals , Body Size , Dietary Exposure/analysis , Ecotoxicology , Environmental Monitoring/methods , Fisheries , Fishes/growth & development , Hawaii , Phytoplankton , Plastics/toxicity , Predatory Behavior , Swimming , Water Pollutants, Chemical/toxicity , Zooplankton
8.
BMC Evol Biol ; 19(1): 88, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975077

ABSTRACT

BACKGROUND: Local adaptation of marine and diadromous species is thought to be a product of larval dispersal, settlement mortality, and differential reproductive success, particularly in heterogeneous post-settlement habitats. We evaluated this premise with an oceanographic passive larval dispersal model coupled with individual-based models of post-settlement selection and reproduction to infer conditions that underlie local adaptation in Sicyopterus stimpsoni, an amphidromous Hawaiian goby known for its ability to climb waterfalls. RESULTS: Our model results demonstrated that larval dispersal is spatio-temporally asymmetric, with more larvae dispersed from the southeast (the Big Island) to northwest (Kaua'i) along the archipelago, reflecting prevailing conditions such as El Niño/La Niña oscillations. Yet connectivity is nonetheless sufficient to result in homogenous populations across the archipelago. We also found, however, that ontogenetic shifts in habitat can give rise to adaptive morphological divergence when the strength of predation-driven post-settlement selection crosses a critical threshold. Notably, our simulations showed that larval dispersal is not the only factor determining the likelihood of morphological divergence. We found adaptive potential and evolutionary trajectories of S. stimpsoni were greater on islands with stronger environmental gradients and greater variance in larval cohort morphology due to fluctuating immigration. CONCLUSIONS: Contrary to expectation, these findings indicate that immigration can act in concert with selection to favor local adaptation and divergence in species with marine larval dispersal. Further development of model simulations, parameterized to reflect additional empirical estimates of abiotic and biotic factors, will help advance our understanding of the proximate and ultimate mechanisms driving adaptive evolution, population resilience, and speciation in marine-associated species.


Subject(s)
Adaptation, Physiological , Biophysical Phenomena , Models, Biological , Perciformes/physiology , Selection, Genetic , Animal Distribution , Animals , Computer Simulation , Hawaii , Islands , Larva/physiology , Linear Models , Oceanography , Perciformes/anatomy & histology
9.
Dis Aquat Organ ; 123(2): 87-99, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28262632

ABSTRACT

Fish die-offs are important signals in tropical marine ecosystems. In 2010, a mass mortality of pufferfish in Hawaii (USA) was dominated by Arothron hispidus showing aberrant neurological behaviors. Using pathology, toxinology, and field surveys, we implicated a series of novel, polar, marine toxins as a likely cause of this mass mortality. Our findings are striking in that (1) a marine toxin was associated with a kill of a fish species that is itself toxic; (2) we provide a plausible mechanism to explain clinical signs of affected fish; and (3) this epizootic likely depleted puffer populations. Whilst our data are compelling, we did not synthesize the toxin de novo, and we were unable to categorically prove that the polar toxins caused mortality or that they were metabolites of an undefined parent compound. However, our approach does provide a template for marine fish kill investigations associated with marine toxins and inherent limitations of existing methods. Our study also highlights the need for more rapid and cost-effective tools to identify new marine toxins, particularly small, highly polar molecules.


Subject(s)
Fish Diseases/chemically induced , Marine Toxins/toxicity , Tetraodontiformes , Animals , Fish Diseases/epidemiology , Fish Diseases/mortality , Fish Diseases/pathology , Hawaii/epidemiology , Marine Toxins/chemistry
10.
PLoS One ; 11(12): e0167626, 2016.
Article in English | MEDLINE | ID: mdl-27930680

ABSTRACT

We present the first comprehensive estimate of connectivity of passive pelagic particles released from coral reef habitat throughout the Hawaiian Archipelago. Potential connectivity is calculated using a Lagrangian particle transport model coupled offline with currents generated by an oceanographic circulation model, MITgcm. The connectivity matrices show a surprising degree of self-recruitment and directional dispersal towards the northwest, from the Main Hawaiian Islands (MHI) to the northwestern Hawaiian Islands (NWHI). We identify three predicted connectivity breaks in the archipelago, that is, areas in the mid and northern part of the archipelago that have limited connections with surrounding islands and reefs. Predicted regions of limited connectivity generally match observed patterns of genetic structure reported for coral reef species in the uninhabited NWHI, but multiple genetic breaks observed in the inhabited MHI are not explained by passive dispersal. The better congruence in our modeling results based on physical transport of passive particles in the low-lying atolls of the uninhabited NWHI, but not in the anthropogenically impacted high islands of the MHI begs the question: what ultimately controls connectivity in this system?


Subject(s)
Coral Reefs , Biodiversity , Hawaii
11.
PeerJ ; 4: e1636, 2016.
Article in English | MEDLINE | ID: mdl-26855873

ABSTRACT

Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

12.
BMC Genomics ; 16: 991, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26597042

ABSTRACT

BACKGROUND: Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses. RESULTS: Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five genomes, whereas type VI secretion systems were only found in L. enzymogenes and L. gummosus. Genes encoding components of the flagellar apparatus were absent in the two sequenced L. antibioticus strains. The genomes contained a large number of genes encoding extracellular enzymes including chitinases, glucanases and peptidases. Various nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clusters encoding putative bioactive metabolites were identified but only few of these clusters were shared between the different species. Metabolic profiling by imaging mass spectrometry complemented, in part, the in silico genome analyses and allowed visualisation of the spatial distribution patterns of several secondary metabolites produced by or induced in Lysobacter species during interactions with the soil-borne fungus Rhizoctonia solani. CONCLUSIONS: Our work shows that mining the genomes of Lysobacter species in combination with metabolic profiling provides novel insights into the genomic and metabolic potential of this widely distributed but understudied and versatile bacterial genus.


Subject(s)
Genomics , Lysobacter/genetics , Lysobacter/metabolism , Metabolomics , Lysobacter/physiology , Movement , Multigene Family , Rhizoctonia/physiology
13.
PLoS One ; 9(8): e103701, 2014.
Article in English | MEDLINE | ID: mdl-25098694

ABSTRACT

The movement of juvenile loggerhead turtles (n = 42) out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses--Real time) circulation data, and three different vertical strata (0-5 m, 0-40 m, 0-100 m) of HYCOM (HYbrid Coordinate Ocean Model) circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed.


Subject(s)
Animal Migration/physiology , Oceans and Seas , Spacecraft , Turtles/physiology , Animals
14.
PLoS One ; 8(10): e76487, 2013.
Article in English | MEDLINE | ID: mdl-24098512

ABSTRACT

Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.


Subject(s)
Antibiosis , Fungal Proteins/genetics , Lysobacter/physiology , Magnaporthe/genetics , Magnaporthe/immunology , Transcriptome , Amino Acid Motifs , Bacterial Load , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Fungal , Mutation , Nucleotide Motifs , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Time Factors
15.
Antonie Van Leeuwenhoek ; 103(6): 1271-80, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23529159

ABSTRACT

Despite substantial interest investigating bacterial mechanisms of fungal growth inhibition, there are few methods available that quantify fungal cell death during direct interactions with bacteria. Here we describe an in vitro cell suspension assay using the tetrazolium salt MTT as a viability stain to assess direct effects of the bacterial antagonist Lysobacter enzymogenes on hyphal cells of the filamentous fungus Cryphonectria parasitica. The effects of bacterial cell density, fungal age and the physiological state of fungal mycelia on fungal cell viability were evaluated. As expected, increased bacterial cell density correlated with reduced fungal cell viability over time. Bacterial effects on fungal cell viability were influenced by both age and physiological state of the fungal mycelium. Cells obtained from 1-week-old mycelia lost viability faster compared with those from 2-week-old mycelia. Likewise, hyphal cells obtained from the lower layer of the mycelial pellicle lost viability more quickly compared with cells from the upper layer of the mycelial pellicle. Fungal cell viability was compared between interactions with L. enzymogenes wildtype strain C3 and a mutant strain, DCA, which was previously demonstrated to lack in vitro antifungal activity. Addition of antibiotics eliminated contributions to MTT-formazan production by bacterial cells, but not by fungal cells, demonstrating that mutant strain DCA had lost complete capacity to reduce fungal cell viability. These results indicate this cell suspension assay can be used to quantify bacterial effects on fungal cells, thus providing a reliable method to differentiate strains during bacterial/fungal interactions.


Subject(s)
Antibiosis , Lysobacter/physiology , Saccharomycetales/growth & development , Antifungal Agents , Cell Count , Microbial Viability , Tetrazolium Salts , Thiazoles
16.
Environ Microbiol ; 15(3): 716-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23297839

ABSTRACT

Gene expression profiles of the biological control strain Pseudomonas protegens Pf-5 inhabiting pea seed surfaces were revealed using a whole-genome oligonucleotide microarray. We identified genes expressed by Pf-5 under the control of two global regulators (GacA and RpoS) known to influence biological control and secondary metabolism. Transcript levels of 897 genes, including many with unknown functions as well as those for biofilm formation, cyclic diguanylate (c-di-GMP) signalling, iron homeostasis and secondary metabolism, were influenced by one or both regulators, providing evidence for expression of these genes by Pf-5 on seed surfaces. Comparison of the GacA and RpoS transcriptomes defined for Pf-5 grown on seed versus in broth culture overlapped, but most genes were regulated by GacA or RpoS under only one condition, likely due to differing levels of expression in the two conditions. We quantified secondary metabolites produced by Pf-5 and gacA and rpoS mutants on seed and in culture, and found that production profiles corresponded generally with biosynthetic gene expression profiles. Future studies evaluating biological control mechanisms can now focus on genes expressed by Pf-5 on seed surfaces, the habitat where the bacterium interacts with seed-infecting pathogens to suppress seedling diseases.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas/genetics , Pseudomonas/metabolism , Seeds/microbiology , Sigma Factor/metabolism , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Biofilms , Electron Transport/genetics , Gene Expression Profiling , Iron/metabolism , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Pisum sativum/microbiology , Pseudomonas/enzymology , Regulon/genetics , Sigma Factor/genetics , Signal Transduction
17.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22792073

ABSTRACT

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Subject(s)
Genome, Bacterial , Plants , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Sequence Analysis, DNA , Animals , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Bacteriocins/genetics , Genetic Heterogeneity , Genetic Variation , Host-Pathogen Interactions/genetics , Insecta/genetics , Multigene Family , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plants/genetics , Plants/microbiology , Repetitive Sequences, Nucleic Acid/genetics , Resorcinols/metabolism
18.
Annu Rev Phytopathol ; 47: 63-82, 2009.
Article in English | MEDLINE | ID: mdl-19400650

ABSTRACT

A fundamental issue in biology is the question of how bacteria initiate and maintain pathogenic relationships with eukaryotic hosts. Despite billions of years of coexistence, far less is known about bacterial/fungal interactions than the equivalent associations formed by either of these types of microorganisms with higher eukaryotes. This review highlights recent research advances in the field of bacterial/fungal interactions, and provides examples of the various forms such interactions may assume, ranging from simple antagonism and parasitism to more intimate associations of pathogenesis and endosymbiosis. Information derived from the associations of bacteria and fungi in the context of natural and agronomic ecosystems is emphasized, including interactions observed from biological control systems, endosymbiotic relationships, diseases of cultivated mushrooms, and model systems that expand our understanding of human disease. The benefits of studying these systems at the molecular level are also emphasized.


Subject(s)
Bacteria/pathogenicity , Bacterial Physiological Phenomena , Fungi/physiology , Host-Parasite Interactions/physiology
19.
Environ Microbiol ; 11(1): 149-58, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18811645

ABSTRACT

In this study, we investigated the role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. A mini-Tn5 transposon mutant of E. cloacae SLD1a-1, designated as 4E6, was isolated that had lost the ability to reduce Se(VI) to Se(0). Genetic analysis of mutant strain 4E6 showed that the transposon was inserted within a menD gene among a menFDHBCE gene cluster that encodes for proteins required for menaquinone biosynthesis. A group of E. coli K12 strains with single mutations in the menF, menD, menC and menE genes were tested for loss of selenate reduction activity. The results showed that E. coli K12 carrying a deletion of either the menD, menC or menE gene was unable to reduce selenate. Complementation using wild-type sequences of the E. cloacae SLD1a-1 menFDHBCE sequence successfully restored the selenate reduction activity in mutant strain 4E6, and E. coli K12 menD and menE mutants. Selenate reduction activity in 4E6 was also restored by chemical complementation using the menaquinone precursor compound 1,4-dihydroxy-2-nathphoic acid. The results of this work suggest that menaquinones are an important source of electrons for the selenate reductase, and are required for selenate reduction activity in E. cloacae SLD1a-1 and E. coli K12.


Subject(s)
Carbon-Carbon Lyases/genetics , Coenzyme A Ligases/genetics , Enterobacter cloacae/metabolism , Escherichia coli K12/metabolism , Escherichia coli Proteins/genetics , Pyruvate Oxidase/genetics , Selenium Compounds/metabolism , Vitamin K 2/metabolism , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Deletion , Genetic Complementation Test , Molecular Sequence Data , Mutagenesis, Insertional , Naphthols/metabolism , Oxidation-Reduction , Selenic Acid , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...