Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(16): 6942-6990, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28699740

ABSTRACT

A novel class of therapeutic drug candidates for heart failure, highly potent and selective GRK2 inhibitors, exhibit potentiation of ß-adrenergic signaling in vitro studies. Hydrazone derivative 5 and 1,2,4-triazole derivative 24a were identified as hit compounds by HTS. New scaffold generation and SAR studies of all parts resulted in a 4-methyl-1,2,4-triazole derivative with an N-benzylcarboxamide moiety with highly potent activity toward GRK2 and selectivity over other kinases. In terms of subtype selectivity, these compounds showed enough selectivity against GRK1, 5, 6, and 7 with almost equipotent inhibition to GRK3. Our medicinal chemistry efforts led to the discovery of 115h (GRK2 IC50 = 18 nM), which was obtained the cocrystal structure with human GRK2 and an inhibitor of GRK2 that potentiates ß-adrenergic receptor (ßAR)-mediated cAMP accumulation and prevents internalization of ßARs in ß2AR-expressing HEK293 cells treated with isoproterenol. Therefore, 115h appears to be a novel class of therapeutic for heart failure treatment.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , Heart Failure/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , meta-Aminobenzoates/pharmacology , Crystallography, X-Ray , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Design , HEK293 Cells , High-Throughput Screening Assays , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Receptors, Adrenergic, beta/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , meta-Aminobenzoates/chemical synthesis , meta-Aminobenzoates/chemistry , rho-Associated Kinases/antagonists & inhibitors
2.
SLAS Discov ; 22(9): 1168-1174, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28426937

ABSTRACT

In a high-throughput screening (HTS) process, the chemical reactivity of test samples should be carefully examined because such reactive compounds may lead to false-positive results and adverse effects in vivo. Among all natural amino acids, the thiol side chain in cysteine has the highest nucleophilicity; thus, assessment of intrinsic thiol group reactivity in the HTS processes is expected to accelerate drug discovery. In general, kchem (M-1s-1), the secondary reaction rate constant of a compound to thiol, can be evaluated via time course measurements of thiol-compound adducts using liquid chromatography-mass spectroscopy; this requires time-consuming and labor-intensive procedures. To overcome this issue, we developed a fluorescence-based competitive endpoint assay that allows quantitative calculation of the reaction rate of test compounds in an HTS format. Our assay is based on the competitive reaction for a free thiol (e.g., glutathione) between the test compounds and a fluorescent probe, o-maleimide BODIPY. Our assay provides robust data with a satisfactory throughput at an affordable cost. Our kchem evaluation method has advantages over previous assays in terms of higher throughput and quantitativeness. Thus, it contributes to early elimination of reactive compounds as well as quantitative evaluation of the kchem values of covalent inhibitors.

3.
Bioorg Med Chem Lett ; 26(3): 1086-1089, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26704264

ABSTRACT

The MAPK signaling cascade, comprised of several linear and intersecting pathways, propagates signaling into the nucleus resulting in cytokine and chemokine release. The Map Kinase Kinase isoforms 3 and 6 (MKK3 and MKK6) are responsible for the phosphorylation and activation of p38, and are hypothesized to play a key role in regulating this pathway without the redundancy seen in downstream effectors. Using FBDD, we have discovered efficient and selective inhibitors of MKK3 and MKK6 that can serve as tool molecules to help further understand the role of these kinases in MAPK signaling, and the potential impact of inhibiting kinases upstream of p38.


Subject(s)
Drug Design , MAP Kinase Kinase 3/antagonists & inhibitors , MAP Kinase Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Humans , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/metabolism , MAP Kinase Signaling System/drug effects , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , U937 Cells , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Bioorg Med Chem ; 18(14): 5157-71, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20580563

ABSTRACT

GPR54 is a G protein-coupled receptor (GPCR) which was formerly an orphan receptor. Recent functional study of GPR54 revealed that the receptor plays an essential role to modulate sex-hormones including GnRH. Thus, antagonists of GPR54 are expected to be novel drugs for sex-hormone dependent diseases such as prostate cancer or endometriosis. We recently reported 2-acylamino-4,6-diphenylpyridines as the first small molecule GPR54 antagonists with high potency. However, the representative compound 1 showed low brain exposure, where GPR54 acts as a modulator of gonadotropins by binding with its endogenous ligand, metastin. In order to discover compounds that have not only potent GPR54 antagonistic activity but also good brain permeability, we focused on converting the primary amine on the side chain to a secondary or tertiary amine, and finally we identified 15a containing a piperazine group. This compound exhibited high affinity to human and rat GPR54, apparent antagonistic activity, and high brain exposure. In addition, intravenous administration of 15a to castrated male rat suppressed plasma LH level, which indicates the possibility of a small molecule GPR54 antagonist as a novel drug for sex-hormone dependent diseases.


Subject(s)
Aminopyridines/pharmacology , Aminopyridines/pharmacokinetics , Brain/metabolism , Luteinizing Hormone/blood , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , CHO Cells , Caco-2 Cells , Cricetinae , Cricetulus , Humans , Luteinizing Hormone/antagonists & inhibitors , Male , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/metabolism , Receptors, Kisspeptin-1
5.
Bioorg Med Chem ; 18(11): 3841-59, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20457527

ABSTRACT

GPR54 is a G protein-coupled receptor (GPCR) which was formerly an orphan receptor. Recent functional study of GPR54 revealed that the receptor has an essential role to modulate sex-hormones including GnRH. Though antagonists of GPR54 are expected to be novel drugs for sex-hormone dependent diseases such as prostate cancer or endometriosis, small molecule GPR54 antagonists have not been reported. We have synthesized a series of 2-acylamino-4,6-diphenylpyridines to identify potent GPR54 antagonists. Detailed structure-activity relationship studies led to compound 9l with an IC(50) value of 3.7nM in a GPR54 binding assay, and apparent antagonistic activity in a cellular functional assay.


Subject(s)
Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Inhibitory Concentration 50 , Pyridines/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, Kisspeptin-1 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...