Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(19): 7034-7040, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756814

ABSTRACT

For the development of the next generation of fuel cells, it is essential to create an innovative design principle of polymer electrolytes that is beyond extension of the existing strategy. In the present study, we focused on the surface hopping proton conduction mechanism where an activation energy for proton conduction is greatly reduced by decreasing the distance between SO3- groups. Our gyroid nanostructured polymer film (Film-G), with a hydrophilic surface where the SO3- groups are aligned densely and precisely, shows high proton conductivity of the order of 10-2 S cm-1 when the water content is about 15 wt%. We reveal that the high proton conductivity of Film-G is attributed to the exhibition of an extremely-fast surface hopping conduction mechanism due to the reduced activation energy barrier along the gyroid minimal surface. This finding should introduce a game-changing novel opportunity in polymer electrolyte design.

2.
Fitoterapia ; 172: 105731, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935270

ABSTRACT

The occurrence of macrocyclic daphnane orthoesters (MDOs) with a 1-alkyl group originating from a C14 aliphatic chain is extremely limited in the plant kingdom and has only been isolated from Edgeworthia chrysantha. In the present study, LC-ESI-MS/MS analysis was performed on different parts of E. chrysantha, including flower buds, flowers, leaves, and stems, and resulted in the identification of seven MDOs in all the four plant parts, including two previously unreported compounds 1 and 7. Further LC-MS guided isolation was carried out to afford compounds 1 and 7, and their structures were determined by various spectroscopic analyses. These compounds were also evaluated for anti-HIV activity, thus expanding insights into the structure-activity relationships for MDOs.


Subject(s)
Diterpenes , Thymelaeaceae , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Molecular Structure , Thymelaeaceae/chemistry
3.
Macromol Rapid Commun ; 42(12): e2100115, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33960572

ABSTRACT

Gyroid-nanostructured all-solid polymer films with exceedingly high proton conductivity and low H2 gas permeability have been created via crosslinking polymerization of mixtures of a zwitterionic amphiphilic monomer and a polymerizable imide-type acid that co-organize into bicontinuous cubic liquid-crystalline phases. The gyroid nanostructures are visualized by reconstructing a 3D electron map from the synchrotron X-ray diffraction patterns. These films exhibit high proton conductivity of the order of 10-1 S cm-1 and extremely low H2 gas permeability of the order of 10-15 mol m m-2 s-1 Pa-1 . These properties can be ascribed to the presence of the ionic liquid-like layer along the gyroid minimal surface. Since these two characteristics are required for improving the performance of proton-exchange membrane fuel cells, the present membrane design represents a promising strategy for the development of advanced devices, pertinent to establishing sustainable energy sources.


Subject(s)
Nanostructures , Polymers , Electric Conductivity , Permeability , Protons
4.
Angew Chem Int Ed Engl ; 59(22): 8445-8450, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32128958

ABSTRACT

We report a new molecular-design principle for creating double-gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol-1 in DMSO-d6 solution (DFT prediction for a model compound in the vacuum: 90-100 kJ mol-1 ). Due to the restricted rotation, the amphiphiles feature "double" atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co-organize into I a 3 ‾ d -type bicontinuous cubic liquid-crystalline mesophases through nanosegregation of the ionic and non-ionic parts. Considering the intrinsic characteristic of I a 3 ‾ d -type bicontinuous cubic structures that they are composed of intertwined right- and left-handed single gyroids, we propose that the simultaneous presence of both R- and S-atropisomers is an important contributor to the formation of double-gyroid structures.

5.
Chem Sci ; 10(25): 6245-6253, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31367299

ABSTRACT

A polymerizable amphiphile having two zwitterionic head-groups has been designed. This compound co-organizes with an acid, bis(trifluoromethanesulfonyl)imide (HTf2N), into a gyroid bicontinuous cubic liquid-crystalline phase. In situ polymerization of this phase has been successfully achieved by UV irradiation in the presence of a photoinitiator, yielding a self-standing gyroid-nanostructured polymer film. When the polymer film is placed under different relative humidity conditions or in water, it absorbs water owing to the strong hydration ability of the zwitterionic parts. It has been found that the polymer film preserves the gyroid nanostructure after the water absorption. Based on reconstructed electron density maps, it is assumed that the absorbed water molecules form a 3D continuous network along the gyroid minimal surface, which satisfies several key conditions for inducing fast proton conduction. As expected, such hydrated films show high ionic conductivities in the order of 10-1 S cm-1 when the water content of the film reaches 15.6 wt% at RH = 90%. The high conductivity is attributed to the induction of the Grotthuss mechanism, that is, proton conduction via the hydrogen-bonding network of the incorporated water molecules.

6.
J Virol Methods ; 273: 113706, 2019 11.
Article in English | MEDLINE | ID: mdl-31419456

ABSTRACT

When the adherent stable serum-free porcine kidney cell line CPK-NS were inoculated with porcine circovirus type 2 (PCV2) and passaged, viral titre concentration-dependent cell detachment was observed. The copy number of viral genes in supernatants of the infected CPK-NS cells decreased as cell detachment progressed. Furthermore, cell detachment was completely inhibited via neutralisation of the virus using antisera collected from PCV2-infected specific pathogen-free pigs. These results indicated that detachment of CPK-NS cells is a cytopathic effect (CPE) caused via infection with PCV2. Only a single round of cell passaging was required to observe clear a CPE when the inoculated viral titre was significantly high [≥104.5 median tissue culture infectious dose (TCID50)/mL]. Our study confirms that PCV2, which is normally non-cytopathogenic, is capable of inducing a distinct CPE in CPK-NS cells. Application of CPK-NS cells for detection of viruses may contribute towards the diagnosis and control of PCV2-mediated infectious diseases.


Subject(s)
Circovirus/pathogenicity , Cytopathogenic Effect, Viral , Viral Load , Animals , Cell Culture Techniques , Cell Line , Circovirus/growth & development , Culture Media, Serum-Free , Kidney/cytology , Neutralization Tests , Swine , Swine Diseases/virology
7.
Materials (Basel) ; 10(11)2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29077001

ABSTRACT

We have succeeded in developing viologen-based liquid-crystalline materials forming bicontinuous cubic phases. They are composed of amphiphilic zwitterions with a viologen ionic-head-group and sulfonyl-imide-type acids. In the bicontinuous cubic liquid-crystalline assemblies, the ionic-head groups of the amphiphiles align along a gyroid minimal surface, forming a 3D continuous viologen layer. The ionic state of the viologen-moieties can be tuned from a dication state (V2+) to a radical mono cation state (V1+•) by UV irradiation and/or electric field. This redox reaction proceeds in bulk, accompanying the change of their color from colorless to purple. Interestingly, they preserve the 3D molecular assembled structures beyond the redox reaction, which has been confirmed by polarizing optical microscopy and X-ray diffraction measurements.

8.
Adv Mater ; 29(4)2017 Jan.
Article in English | MEDLINE | ID: mdl-27882615

ABSTRACT

Glassy bicontinuous cubic liquid crystals are developed to be a matrix having a hydrophilic infinite periodic minimal surface (IPMS). They function as a scaffold for water, leading to the formation of a 3D continuous hydrogen-bonding network of water molecules along the IPMS. This material design is advantageous for developing novel electrolytes with rigidity and high proton conductivity.

9.
J Vet Diagn Invest ; 26(4): 547-552, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25027496

ABSTRACT

In the current study, molecular, biological, and antigenic analyses were performed to characterize Border disease virus (BDV) strain FNK2012-1 isolated from a pig in 2012 in Japan. The complete genome comprises 12,327 nucleotides (nt), including a large open reading frame of 11,685 nt. Phylogenetic analysis revealed that FNK2012-1 was clustered into BDV genotype 1 with ovine strains. FNK2012-1 grew in porcine, bovine, and ovine primary cells and cell lines, but grew better in bovine and ovine cells than in porcine cells. Specific pathogen-free pigs inoculated with FNK2012-1 did not show any clinical signs. Noninoculated contact control pigs also did not show clinical signs and did not seroconvert. The results suggest that FNK2012-1 may be of ruminant origin and is poorly adapted to pigs. Such observations can provide important insights into evidence for infection and transmission of BDV, which may be of ruminant origin, among pigs.


Subject(s)
Border Disease/virology , Border disease virus/physiology , Genome, Viral , Swine Diseases/virology , Animals , Border disease virus/genetics , Border disease virus/immunology , Phylogeny , RNA, Viral , Sequence Analysis, RNA , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...