Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Genet ; 70(1): 8, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913087

ABSTRACT

The Byr2 kinase of fission yeast Schizosaccharomyces pombe is recruited to the membrane with the assistance of Ras1. Byr2 is also negatively regulated by 14-3-3 proteins encoded by rad24 and rad25. We conducted domain and mutational analysis of Byr2 to determine which region is critical for its binding to 14-3-3 proteins. Rad24 and Rad25 bound to both the Ras interaction domain in the N-terminus and to the C-terminal catalytic domain of Byr2. When amino acid residues S87 and T94 of the Ras-interacting domain of Byr2 were mutated to alanine, Rad24 could no longer bind to Byr2. S402, S566, S650, and S654 mutations in the C-terminal domain of Byr2 also abolished its interaction with Rad24 and Rad25. More than three mutations in the C-terminal domain were required to abolish completely its interaction with 14-3-3 protein, suggesting that multiple residues are involved in this interaction. Expression of the N-terminal domain of Byr2 in wild-type cells lowered the mating ratio, because it likely blocked the interaction of Byr2 with Ste4 and Ras1, whereas expression of the catalytic domain of Byr2 increased the mating ratio as a result of freeing from intramolecular regulation by the N-terminal domain of Byr2. The S87A and T94A mutations of Byr2 increased the mating ratio and attenuated inhibition of Byr2 by Rad24; therefore, these two amino acids are critical for its regulation by Rad24. S566 of Byr2 is critical for activity of Byr2 but not for its interaction with 14-3-3 proteins. In this study, we show that 14-3-3 proteins interact with two separate domains in Byr2 as negative regulators.


Subject(s)
14-3-3 Proteins , Protein Binding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Mutation , DNA Mutational Analysis , Protein Domains/genetics , Protein Interaction Domains and Motifs , Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins
2.
FEMS Yeast Res ; 15(8)2015 Dec.
Article in English | MEDLINE | ID: mdl-26542710

ABSTRACT

Schizosaccharomyces pombe Cap1 has been identified as the (adenylyl) cyclase-associated protein. Cap1 was able to bind Cap1 itself and actin. Cap1 localized at the growing tip, and this localization was dependent on the Cap1 P2 region. In a two-hybrid screening using cap1 as bait, we isolated csh3, which encodes a protein of 296 amino acids with an SH3 domain and a proline/glutamine-rich region. The binding of Csh3 and Cap1 was confirmed by in vivo pull down assays. Cooperative functions of Csh3 and Cap1 were observed. Deletion of both csh3 and cap1 resulted in heightened sensitivity to CaCl2, while disruption of either gene alone did not have any effect in this regard. In addition, over-expression of csh3 or cap1 alone did not affect cell growth, while over-expression of both genes resulted in growth retardation. Finally, while Csh3-GFP localized to the cytoplasm in wild-type cells, its localization was altered in cap1Δ cells, suggesting that the interaction between Csh3 and Cap1 controls the cellular localization of Csh3. These results demonstrate that Cap1 in Schizo. pombe is a multifunctional protein that functions through interaction with Cap1 itself and other proteins including adenylyl cyclase, actin and Csh3.


Subject(s)
Fungal Proteins/metabolism , Protein Interaction Mapping , Schizosaccharomyces/metabolism , Calcium Chloride/metabolism , Fungal Proteins/genetics , Gene Deletion , Gene Expression , Protein Binding , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...