Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 17590, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266367

ABSTRACT

Within this work, we demonstrate in-situ alignment of the easy axis single-crystal magnetic particles inside a polymer matrix using fused filament fabrication. Two different magnetic materials are investigated: (i) Strontium hexaferrite inside a PA6 matrix, fill grade: 49 vol% and (ii) Samarium iron nitride inside a PA12 matrix, fill grade: 44 vol%. In the presence of the external alignment field, the strontium hexaferrite particles inside the PA6 matrix can be well aligned with a ratio of remnant magnetization to saturation magnetization in an easy axis of 0.7. No significant alignment for samarium iron nitride could be achieved. The results show the feasibility to fabricate magnets with arbitrary and locally defined easy axis using fused filament fabrication since the permanent magnets (or alternatively an electromagnet) can be mounted on a rotatable platform.

2.
Sci Rep ; 9(1): 412, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30675006

ABSTRACT

Amorphous (a-) Fe90-xCoxSc10 alloys have been produced by rapid quenching from the melt. The Curie temperature, TC, was determined using both mean field theory and Landau's theory of second-order phase transitions in zero and non-zero external fields. The dependence of TC on the atomic spacing can be explained by the empirical Bethe-Slater curve. The value of TC of a- Fe5Co85Sc10, determined by the above theoretical approaches is 1150 K, which is the highest TC ever measured for amorphous alloys. The flattening of the measured normalized magnetization, M(T)/M(0), as a function of the reduced temperature, T/TC, is explained within the framework of the Handrich- Kobe model. According to this model the fluctuation of the exchange integral is the main reason for the flattening of M(T)/M(0). In the case of a-Fe90Sc10 without Co, however, the fluctuation of the exchange integral is dominant only at zero external field, Bex = 0. At Bex = 9 T, however, the fluctuation of the exchange integral has no conspicuous effect on the reduction of the magnetization. It is shown that at Bex = 9 T the frozen magnetic clusters control the behaviour of the reduced magnetization as function of T/TC. In contrast to other ferromagnetic alloys, where the flattening of M(T)/M(0) is characteristic for an amorphous structure, the a- Fe5Co85Sc10 does not exhibit any trace of the fluctuation of the exchange integral.

3.
Nanoscale ; 10(3): 1308-1321, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29296980

ABSTRACT

We have produced an innovative, theranostic material based on FePt/SiO2/Au hybrid nanoparticles (NPs) for both, photo-thermal therapy and magnetic resonance imaging (MRI). Furthermore, a new synthesis approach, i.e., Au double seeding, for the preparation of Au nanoshells around the FePt/SiO2 cores, is proposed. The photo-thermal and the MRI response were first demonstrated on an aqueous suspension of hybrid FePt/SiO2/Au NPs. The cytotoxicity together with the internalization mechanism and the intracellular fate of the hybrid NPs were evaluated in vitro on a normal (NPU) and a half-differentiated cancerous cell line (RT4). The control samples as well as the normal cell line incubated with the NPs showed no significant temperature increase during the in vitro photo-thermal treatment (ΔT < 0.8 °C) and thus the cell viability remained high (∼90%). In contrast, due to the high NP uptake by the cancerous RT4 cell line, significant heating of the sample was observed (ΔT = 4 °C) and, consequently, after laser irradiation the cell viability dropped significantly to ∼60%. These results further confirm that the hybrid FePt/SiO2/Au NPs developed in the scope of this work were not only efficient but also highly selective photo-thermal agents. Furthermore, the improvement in the contrast and the easier distinction between the healthy and the cancerous tissues were clearly demonstrated with in vitro MRI experiments, proving that hybrid NPs have an excellent potential to be used as contrast agents.


Subject(s)
Magnetic Resonance Imaging , Metal Nanoparticles , Silicon Dioxide , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Cell Survival , Gold , Hot Temperature , Humans , Iron , Platinum , Swine
4.
RSC Adv ; 8(26): 14694-14704, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540786

ABSTRACT

A detailed magnetic study of separated Fe-Pt NPs and Fe-Pt clusters was performed to predict their optimal size and morphology for the maximum saturation magnetization, a factor that is known to influence the performance of a magnetic-resonance-imaging (MRI) contrast agent. Excellent stability and biocompatibility of the nanoparticle suspension was achieved using a novel coating based on hydrocaffeic acid (HCA), which was confirmed with a detailed Fourier-transform infrared spectroscopy (FTIR) study. An in vitro study on a human-bladder papillary urothelial neoplasm RT4 cell line confirmed that HCA-Fe-Pt nanoparticles showed no cytotoxicity, even at a very high concentration (550 µg Fe-Pt per mL), with no delayed cytotoxic effect being detected. This indicates that the HCA coating provides excellent biocompatibility of the nanoparticles, which is a prerequisite for the material to be used as a safe contrast agent for MRI. The cellular uptake and internalization mechanism were studied using ICP-MS and TEM analyses. Furthermore, it was shown that even a very low concentration of Fe-Pt nanoparticles (<10 µg mL-1) in the cells is enough to decrease the T 2 relaxation times by 70%. In terms of the MRI imaging, this means a large improvement in the contrast, even at a low nanoparticle concentration and an easier visualization of the tissues containing nanoparticles, proving that HCA-coated Fe-Pt nanoparticles have the potential to be used as an efficient and safe MRI contrast agent.

5.
Biomed Mater ; 10(4): 045012, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26225819

ABSTRACT

This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO2-anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin 'passivation' layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces.


Subject(s)
Blood Proteins/chemistry , Coated Materials, Biocompatible/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Adsorption , Hardness , Humans , Materials Testing , Nanoparticles/ultrastructure , Protein Binding , Static Electricity , Wettability
6.
Nanotechnology ; 21(48): 485603, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21063053

ABSTRACT

Sm-Fe-Ta-N-O nanospheres were synthesized by pulsed-laser deposition from a Sm(13.8)Fe(82.2)Ta(4.0) target in a nitrogen atmosphere. Three structurally and compositionally distinct types were identified: amorphous, core-shell and hollow nanospheres. Amorphous spheres were compositionally homogeneous and completely oxidized. The core-shell spheres were composed of an iron-rich crystalline core with up to 10 at.% interstitially incorporated nitrogen, surrounded by an amorphous and oxidized shell. The hollow spheres were characterized by voids filled with N(2) gas. It was found that the formation of either amorphous or complex nanospheres is defined by an initial Fe/Sm ratio within the molten droplet. The formation of hollow spheres is believed to be related to the general affinity of liquid metals for gas intake. During rapid solidification the dissolved gas in the melt is trapped within the surrounding solid rim, preventing the outwards diffusion of gas. As long as the amount of gas atoms in the melt is kept below its solubility limits it can be completely interstitially incorporated into the solid, thus forming crystalline Fe(N)-rich cores. If the melt contains more than an equilibrium amount of nitrogen it is possible that the gas recombines to form N(2) molecules, which are condensed inside the spheres.

7.
J Biol Phys ; 29(2-3): 149-58, 2003 Jun.
Article in English | MEDLINE | ID: mdl-23345831

ABSTRACT

In order to access the damaging mechanismsof DNA and its bases on themolecular level by T Hz radiation, it isnecessary to create a database of assessingdamage at different spectral regions.Possible damage by T Hz radiation will beassessed by comparison. Furthermore, theexpose of the cytosine to radiation at157 nm, suggest that photochemical bondbreaking is the only damaging mechanism inthe vacuum ultraviolet region of thespectrum, (157-170) nm where one photonbreaks one chemical bond.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(6 Pt 2): 066111, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11415177

ABSTRACT

Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetization in the +/-J Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic interactions has been investigated. Starting from the saturation, the magnetization per spin m reveals a slow decrease with time, which can be approximated by a power law: m(t)=m(infinity)+(t/a(0))(a(1)), a(1)<0. Moreover, its relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable isoenergetic microstates remaining magnetized. Such behavior is discussed in terms of a random walk that the system performs on its available configuration space.

9.
Biochem J ; 344 Pt 3: 731-8, 1999 Dec 15.
Article in English | MEDLINE | ID: mdl-10585859

ABSTRACT

The structures of glycosylphosphatidylinositols (GPIs) in Plasmodium have been described [Gerold, Schuppert and Schwarz (1994) J. Biol. Chem. 269, 2597-2606]. A detailed understanding of GPI synthesis in Plasmodium is a prerequisite for identifying differences present in biosynthetic pathways of parasites and host cells. A comparison of the biosynthetic pathway of GPIs has revealed differences between mammalian cells and parasitic protozoans. A cell-free incubation system prepared from asexual erythrocytic stages of Plasmodium falciparum, the causative agent of malaria in humans, is capable of synthesizing the same spectrum of GPIs as that found in metabolically labelled parasites. The formation of mannosylated GPIs in the cell-free system is shown to be inhibited by GTP and, unexpectedly, micromolar concentrations of GDP-Man. Lower concentrations of GDP-Man affect the spectrum of GPIs synthesized. The inositol ring of GPIs of P. falciparum is modified by an acyl group. The preferred donor of this fatty acid at the inositol ring is myristoyl-CoA. Inositol acylation has to precede the mannosylation of GPIs because, in the absence of acyl-CoA or CoA, mannosylated GPIs were not detected. Inositol myristoylation is a unique feature of plasmodial GPIs and thus might provide a potential target for drug therapy.


Subject(s)
Glycosylphosphatidylinositols/biosynthesis , Inositol/metabolism , Mannosides/biosynthesis , Plasmodium falciparum/metabolism , Acetylglucosamine/metabolism , Acyl Coenzyme A/metabolism , Acylation , Animals , Cell-Free System , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Coenzyme A/pharmacology , Glycolipids/analysis , Glycolipids/biosynthesis , Glycosylphosphatidylinositols/metabolism , Guanosine Diphosphate Mannose/metabolism , Membrane Lipids/analysis , Membrane Lipids/biosynthesis , Phosphatidylinositols/analysis
10.
Article in English | MEDLINE | ID: mdl-9964065
11.
Mol Cell Biol ; 10(4): 1754-63, 1990 Apr.
Article in English | MEDLINE | ID: mdl-1690850

ABSTRACT

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


Subject(s)
Avian Sarcoma Viruses/genetics , Cell Transformation, Neoplastic , Intercellular Junctions/physiology , Membrane Proteins/metabolism , Amino Acids/analysis , Animals , Arvicolinae , Blotting, Northern , Cell Communication , Cells, Cultured , Connexins , DNA Probes , Fibroblasts/metabolism , Fluorescent Antibody Technique , Immune Sera , Membrane Proteins/genetics , Mice , Myocardium/metabolism , Phosphorylation , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...