Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(11): 8423-8436, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38446635

ABSTRACT

Nanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs. Here, we report the formation of multicomponent LHP NC-only SLs, i.e., using only CsPbBr3 NCs of different sizes as building blocks. The structural diversity of the obtained SLs encompasses the ABO6, ABO3, and NaCl structure types, all of which contain orientationally and positionally locked NCs. For the selected model system, the ABO6-type SL, we observed efficient NC coupling and Förster-like energy transfer from strongly confined 5.3 nm CsPbBr3 NCs to weakly confined 17.6 nm CsPbBr3 NCs, along with characteristic superfluorescence features at cryogenic temperatures. Spatiotemporal exciton dynamics measurements reveal that binary SLs exhibit enhanced exciton diffusivity compared to single-component NC assemblies across the entire temperature range (from 5 to 298 K). The observed coherent and incoherent NC coupling and controllable excitonic transport within the solid NC SLs hold promise for applications in quantum optoelectronic devices.

2.
ACS Nano ; 15(10): 16488-16500, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34549582

ABSTRACT

Self-assembly of colloidal nanocrystals (NCs) holds great promise in the multiscale engineering of solid-state materials, whereby atomically engineered NC building blocks are arranged into long-range ordered structures-superlattices (SLs)-with synergistic physical and chemical properties. Thus far, the reports have by far focused on single-component and binary systems of spherical NCs, yielding SLs isostructural with the known atomic lattices. Far greater structural space, beyond the realm of known lattices, is anticipated from combining NCs of various shapes. Here, we report on the co-assembly of steric-stabilized CsPbBr3 nanocubes (5.3 nm) with disk-shaped LaF3 NCs (9.2-28.4 nm in diameter, 1.6 nm in thickness) into binary SLs, yielding six columnar structures with AB, AB2, AB4, and AB6 stoichiometry, not observed before and in our reference experiments with NC systems comprising spheres and disks. This striking effect of the cubic shape is rationalized herein using packing-density calculations. Furthermore, in the systems with comparable dimensions of nanocubes (8.6 nm) and nanodisks (6.5 nm, 9.0 nm, 12.5 nm), other, noncolumnar structures are observed, such as ReO3-type SL, featuring intimate intermixing and face-to-face alignment of disks and cubes, face-centered cubic or simple cubic sublattice of nanocubes, and two or three disks per one lattice site. Lamellar and ReO3-type SLs, employing large 8.6 nm CsPbBr3 NCs, exhibit characteristic features of the collective ultrafast light emission-superfluorescence-originating from the coherent coupling of emission dipoles in the excited state.

3.
Nano Lett ; 20(5): 3905-3910, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32343589

ABSTRACT

Lead halide perovskite nanocrystals (NCs) are a class of promising light-emitting materials and have been considered as gain media in lasers. Strong exciton-exciton interactions in NCs cause an energy shift of the lowest optical transition and affect the optical gain threshold. Here, we clarify the dynamics of exciton-exciton interactions in highly photoexcited CsPbI3 NCs by double-pump transient absorption spectroscopy. This method provides control over the population of each excited state by varying the time interval between the two pump pulses. We find that the band-edge energy shift induced by the formation of asymmetric hot-biexcitons (comprising one ground-state exciton and one hot exciton) is smaller than that induced by hot excitons and hot biexcitons in the ensemble. We demonstrate that the generation of asymmetric hot-biexcitons reduces the optical gain threshold in the CsPbI3 NC ensemble.

SELECTION OF CITATIONS
SEARCH DETAIL
...