Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(13)2019 Jul 06.
Article in English | MEDLINE | ID: mdl-31284570

ABSTRACT

The flux pinning properties of reacted-and-pressed Ba0.6K0.4Fe2As2 powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ T ≤ 35 K. The scaling analysis of the flux pinning forces ( F p = j c × B , with j c denoting the critical current density) following the Dew-Hughes model reveals a dominant flux pinning provided by normal-conducting point defects ( δ l -pinning) with only small irreversibility fields, H irr , ranging between 0.5 T (35 K) and 16 T (20 K). Kramer plots demonstrate a linear behavior above an applied field of 0.6 T. The samples were further characterized by electron backscatter diffraction (EBSD) analysis to elucidate the origin of the flux pinning. We compare our data with results of Weiss et al. (bulks) and Yao et al. (tapes), revealing that the dominant flux pinning in the samples for applications is provided mainly by grain boundary pinning, created by the densification procedures and the mechanical deformation applied.

2.
Materials (Basel) ; 12(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871274

ABSTRACT

Superconducting foams of YBa2Cu3Oy (YBCO) are proposed as trapped field magnets or supermagnets. The foams with an open-porous structure are light-weight, mechanically strong and can be prepared in large sample sizes. The trapped field distributions were measured using a scanning Hall probe on various sides of an YBCO foam sample after field-cooling in a magnetic field of 0.5 T produced by a square Nd-Fe-B permanent magnet. The maximum trapped field (TF) measured is about 400 G (77 K) at the bottom of the sample. Several details of the TF distribution, the current flow and possible applicatons of such superconducting foam samples in space applications, e.g., as active elements in flux-pinning docking interfaces (FPDI) or as portable strong magnets to collect debris in space, are outlined.

3.
Materials (Basel) ; 11(6)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921787

ABSTRACT

We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2) alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs) of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe) increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe). The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i) improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii) strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

SELECTION OF CITATIONS
SEARCH DETAIL
...