Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612161

ABSTRACT

Struts of a superconducting YBa2Cu3Oy (YBCO) foam prepared by the infiltration growth method on the base of commercial polyurethane foams were extracted from the bulk, and thoroughly characterized concerning the microstructure and the magnetoresistance, measured by the four-point technique. Optical microscopy, electron microscopy, electron backscatter diffraction and atomic force microscopy observations indicate a unique microstructure of the foam struts which shows a large amount of tiny Y2BaCuO5 (Y-211) particles (with diameters between 50 and 100 nm) being enclosed in channel-like grain boundaries between the YBCO grains and a one-of-a-kind surface of the struts covered with Ba3Cu5Oy-particles. The resistance data obtained at temperatures in the range 4.2 K ≤T≤ 150 K (applied magnetic fields ranging from 0 to 7 T) were analyzed in the framework of the fluctuation-induced conductivity (FIC) approach using the models of Aslamazov-Larkin (AL) and Lawrence-Doniach (LD). The resulting FIC curves reveal the presence of five distinct fluctuation regimes, namely, the short-wave (SWF), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuation domains. The analysis of the FIC data enable the coherence length in the direction of the c-axis at zero-temperature (ξc(0)), the irreversibility field (Birr), the upper critical magnetic field (Bc2), the critical current density at T= 0 K (Jc(0)) and several other parameters describing the the material's superconducting properties to be determined. The present data reveal that the minuscule Y-211 particles found along the YBCO grain boundaries alter the excess conductivity and the fluctuation behavior as compared to conventional YBCO samples, leading to a quite high value for Jc(0) for a sample with a non-optimized pinning landscape.

2.
Materials (Basel) ; 15(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35329755

ABSTRACT

Superconducting YBa2Cu3Oy (YBCO) foams were prepared using commercial open-cell, polyurethane foams as starting material to form ceramic Y2BaCuO5 foams which are then converted into superconducting YBCO by using the infiltration growth process. For modelling the superconducting and mechanical properties of the foam samples, a Kelvin-type cell may be employed as a first approach as reported in the literature for pure polyurethane foams. The results of a first modelling attempt in this direction are presented concerning an estimation of the possible trapped fields (TFs) and are compared to experimental results at 77 K. This simple modelling revealed already useful information concerning the best suited foam structure to realize large TF values, but it also became obvious that for various other parameters like magnetostriction, mechanical strength, percolative current flow and the details of the TF distribution, a refined model of a superconducting foam sample incorporating the real sample structure must be considered. Thus, a proper description of the specific microstructure of the superconducting YBCO foams is required. To obtain a set of reliable data, YBCO foam samples were investigated using optical microscopy, scanning electron microscopy and electron backscatter diffraction (EBSD). A variety of parameters including the size and shape of the cells and windows, the length and shape of the foam struts or ligaments and the respective intersection angles were determined to better describe the real foam structure. The investigation of the foam microstructures revealed not only the differences to the original polymer foams used as base material, but also provided further insights to the infiltration growth process via the large amount of internal surface in a foam sample.

3.
Materials (Basel) ; 14(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683658

ABSTRACT

We apply the Roeser-Huber formula to the (RE)Ba2Cu3O7-δ (REBCO with RE= rare earths) high-Tc superconducting material class to calculate the superconducting transition temperature, Tc, using the electronic configuration and the crystallographic data. In a former publication (H. P. Roeser et al., Acta Astronautica 2008, 62, 733-736), the basic idea was described and Tc was successfully calculated for the YBa2Cu3O7-δ compound with two oxygen doping levels δ= 0.04 and 0.45, but several open questions remained. One of the problems remaining was the determination of Tc for the δ= 0.45 sample, which can be explained regarding the various oxygen arrangements being possible within the copper-oxide plane. Having established this proper relation and using the various crystallographic data on the REBCO system available in the literature, we show that the Roeser-Huber equation is capable to calculate the Tc of the various REBCO compounds and the effects of strain and pressure on Tc, when preparing thin film samples. Furthermore, the characteristic length, x, determined for the REBCO systems sheds light on the size of the δTc-pinning sites being responsible for additional flux pinning and the peak effect.

4.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34443801

ABSTRACT

The fabrication and characterization of superconducting nanowires fabricated by the anodic aluminium oxide (AAO) template technique has been reviewed. This templating method was applied to conventional metallic superconductors, as well as to several high-temperature superconductors (HTSc). For filling the templates with superconducting material, several different techniques have been applied in the literature, including electrodeposition, sol-gel techniques, sputtering, and melting. Here, we discuss the various superconducting materials employed and the results obtained. The arising problems in the fabrication process and the difficulties concerning the separation of the nanowires from the templates are pointed out in detail. Furthermore, we compare HTSc nanowires prepared by AAO templating and electrospinning with each other, and give an outlook to further research directions.

5.
Materials (Basel) ; 13(21)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33172199

ABSTRACT

Bulk FeSe superconductors of the iron-based (IBS) "11" family containing various additions of silver were thoroughly investigated concerning the microstructure using optical microscopy and electron microscopy (TEM and SEM). The measurements of electrical resistivity were performed through the four-point technique in the temperature interval T= 2-150 K. The Aslamazov-Larkin model was employed to analyze the fluctuation-induced conductivity (FIC) in all acquired measurements. In all studied products, we found that the FIC curves consist of five different regimes of fluctuation, viz. critical region (CR), three-dimensional (3D), two-dimensional (2D), one-dimensional (1D), and shortwave fluctuation (SWF) regimes. The critical current density (Jc), the lower and upper critical magnetic fields (Bc1 and Bc2), the coherence length along the c-axis at zero-temperature (ξc(0)), and further parameters were assessed with regards to the silver amount within the products. The analyses discloses a diminution in the resistivity and a great reduction in ξc(0) with Ag addition. The optimal silver doping amount is achieved for 7 wt.%, which yields the best superconducting transition and the greatest Jc value.

6.
ACS Omega ; 5(12): 6250-6259, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258859

ABSTRACT

Growth and physical properties of bulk REBa2Cu3O7-δ (REBCO) superconductors fabricated by the infiltration growth (IG) method strongly depend on the initial size and morphology of the RE2BaCuO5 (211) particles. The present work details the novel method we developed for producing sharp-edged and surface-damaged 211 particles to be added to the REBCO bulks. We employed high-energy ultrasonic irradiation for pretreating the 211 particles and fabricated high-performance bulk single-grain YBa2Cu3O7-δ (YBCO) superconductors via the top-seeded IG process. Increasing the ultrasound irradiation power and time duration mechanically damaged the surface of the 211 particles, producing more fine and sharp edges. Systematic investigations of the microstructural properties of the final YBCO bulks indicated that the size and content of the 211 particles gradually decreased without any additional chemical doping. The effective grain refinement and improved interfacial defect densities enhanced the critical current density by a factor of two at 77 K and self-field as compared to a YBCO sample fabricated without any pretreatment. A maximum trapped field of 0.48 T at 77 K was obtained for a sample (20 mm diameter) with 211 particles treated for 60 min and 300 W ultrasound radiation. The effectiveness of the novel method is demonstrated by the superior performance of the YBCO bulk samples prepared as compared to bulk samples fabricated with the addition of Pt and CeO2. This method is novel, cost effective, and very convenient, maintaining high sample homogeneity, and is free of chemical contaminants as compared to other methods which significantly affect the properties of all REBCO bulk products grown by sintering, melt growth, and IG methods.

7.
Materials (Basel) ; 12(13)2019 Jul 06.
Article in English | MEDLINE | ID: mdl-31284570

ABSTRACT

The flux pinning properties of reacted-and-pressed Ba0.6K0.4Fe2As2 powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ T ≤ 35 K. The scaling analysis of the flux pinning forces ( F p = j c × B , with j c denoting the critical current density) following the Dew-Hughes model reveals a dominant flux pinning provided by normal-conducting point defects ( δ l -pinning) with only small irreversibility fields, H irr , ranging between 0.5 T (35 K) and 16 T (20 K). Kramer plots demonstrate a linear behavior above an applied field of 0.6 T. The samples were further characterized by electron backscatter diffraction (EBSD) analysis to elucidate the origin of the flux pinning. We compare our data with results of Weiss et al. (bulks) and Yao et al. (tapes), revealing that the dominant flux pinning in the samples for applications is provided mainly by grain boundary pinning, created by the densification procedures and the mechanical deformation applied.

8.
Materials (Basel) ; 12(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871274

ABSTRACT

Superconducting foams of YBa2Cu3Oy (YBCO) are proposed as trapped field magnets or supermagnets. The foams with an open-porous structure are light-weight, mechanically strong and can be prepared in large sample sizes. The trapped field distributions were measured using a scanning Hall probe on various sides of an YBCO foam sample after field-cooling in a magnetic field of 0.5 T produced by a square Nd-Fe-B permanent magnet. The maximum trapped field (TF) measured is about 400 G (77 K) at the bottom of the sample. Several details of the TF distribution, the current flow and possible applicatons of such superconducting foam samples in space applications, e.g., as active elements in flux-pinning docking interfaces (FPDI) or as portable strong magnets to collect debris in space, are outlined.

9.
Materials (Basel) ; 11(6)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921787

ABSTRACT

We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2) alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs) of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe) increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe). The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i) improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii) strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

SELECTION OF CITATIONS
SEARCH DETAIL
...