Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
3.
mSphere ; 6(3)2021 05 12.
Article in English | MEDLINE | ID: mdl-33980676

ABSTRACT

Serology (antibody) tests to detect previous SARS-CoV-2 infection have been in high demand from the beginning of the COVID-19 pandemic. The initial shortage of diagnostic tests coupled with asymptomatic infections led to a significant demand for serology tests to identify past infections. Despite serious limitations on the interpretation of a positive antibody test in terms of immunity to SARS-CoV-2, antibody testing was initially considered for release from social distancing, return to employment, and "immunity passports." The regulatory approach to antibody tests was limited; manufacturers were encouraged to develop and market antibody tests without submitting validation data to the FDA. FDA guidance grew more stringent, but many poor-quality tests were already on the market-potentially inappropriately used for individual decision-making. This is a case study describing COVID-19 serology tests and the U.S. market and describes lessons learned for a future health security crisis.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Pandemics , SARS-CoV-2/immunology , Asymptomatic Infections , COVID-19 Serological Testing/history , COVID-19 Serological Testing/standards , Forecasting , Health Policy , Health Services Needs and Demand , History, 21st Century , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Marketing of Health Services , Politics , Quality Control , Sensitivity and Specificity , United States , United States Food and Drug Administration , Validation Studies as Topic
5.
Viruses ; 13(2)2021 02 12.
Article in English | MEDLINE | ID: mdl-33673139

ABSTRACT

Managed colonies of European honey bees (Apis mellifera) are under threat from Varroa destructor mite infestation and infection with viruses vectored by mites. In particular, deformed wing virus (DWV) is a common viral pathogen infecting honey bees worldwide that has been shown to induce behavioral changes including precocious foraging and reduced associative learning. We investigated how DWV infection of bees affects the transcriptomic response of the brain. The transcriptomes of individual brains were analyzed using RNA-Seq after experimental infection of newly emerged adult bees with DWV. Two analytical methods were used to identify differentially expressed genes from the ~15,000 genes in the Apis mellifera genome. The 269 genes that had increased expression in DWV infected brains included genes involved in innate immunity such as antimicrobial peptides (AMPs), Ago2, and Dicer. Single bee brain NMR metabolomics methodology was developed for this work and indicates that proline is strongly elevated in DWV infected brains, consistent with the increased presence of the AMPs abaecin and apidaecin. The 1361 genes with reduced expression levels includes genes involved in cellular communication including G-protein coupled, tyrosine kinase, and ion-channel regulated signaling pathways. The number and function of the downregulated genes suggest that DWV has a major impact on neuron signaling that could explain DWV related behavioral changes.


Subject(s)
Bees/genetics , Bees/virology , Insect Proteins/genetics , RNA Viruses/physiology , Animals , Bees/metabolism , Brain/metabolism , Brain/virology , Genome, Insect , Insect Proteins/metabolism , RNA-Seq
6.
Trends Microbiol ; 29(3): 214-223, 2021 03.
Article in English | MEDLINE | ID: mdl-33234439

ABSTRACT

Antibody tests for detecting past infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have many uses for public health decision making, but demand has largely come from individual consumers. This review focuses on the individual relevance of antibody tests: their accuracy in detecting prior infection, what past SARS-CoV-2 infection can currently infer about future immunity or possible medical sequelae, and the potential future importance of antibody tests for vaccine selection and medical screening. Given uncertainty about the antibody tests (quality, accuracy level, positive predictive value) and what those tests might indicate immunologically (durability of antibodies and necessity for protection from reinfection), seropositive test results should not be used to inform individual decision making, and antibody testing should remain a tool of public health at this time.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/immunology , Decision Making , Humans , Public Health
8.
Health Secur ; 17(6): 419-429, 2019.
Article in English | MEDLINE | ID: mdl-31755783

ABSTRACT

Since the inception of gene synthesis technologies, there have been concerns about possible misuse. Using gene synthesis, pathogens-particularly small viruses-may be assembled "from scratch" in the laboratory, evading the regulatory regimes many nations have in place to control unauthorized access to dangerous pathogens. Progress has been made to reduce these risks. In 2010, the US Department of Health and Human Services (HHS) published guidance for commercial gene synthesis providers that included sequence screening of the orders and customer screening. The industry-led International Gene Synthesis Consortium (IGSC) was formed in 2009 to share sequence and customer screening methods, and it now includes the major international gene synthesis providers among its members. Since the 2010 HHS Guidance was released, however, there have been changes in gene synthesis technologies and market conditions that have reduced the efficacy of these biosecurity protections, leading to questions about whether the 2010 HHS Guidance should be updated, what changes could make it more effective, and what other international governance efforts could be undertaken to reduce the risks of misuse of gene synthesis products. This article describes these conditions and recommends actions that governments should take to reduce these risks and engage other nations involved in gene synthesis research.


Subject(s)
Chemistry Techniques, Synthetic/standards , DNA , Genetic Techniques/standards , Government Regulation , International Cooperation , Security Measures , Gene Editing/legislation & jurisprudence , Gene Editing/standards , Global Health , Guidelines as Topic , Humans , United States , United States Dept. of Health and Human Services
SELECTION OF CITATIONS
SEARCH DETAIL
...